Published on Web 04/13/2007
Helical Pores Self-Assembled from Homochiral Dendritic
Dipeptides Based on L-Tyr and Nonpolar r-Amino Acids
Virgil Percec,*, Andr e´ s E. Dulcey, Mihai Peterca, Peter Adelman,†
†
†
†,‡
†
‡
‡
Ritika Samant, Venkatachalapathy S. K. Balagurusamy, and Paul A. Heiney
Contribution from the Roy and Diana Vagelos Laboratories, Department of Chemistry,
UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6323, and Department of Physics
and Astronomy, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6396
Abstract: The synthesis of dendritic dipeptides (4-3,4-3,5)12G2-CH -Boc-L-Tyr-X-OMe where X ) Gly,
2
L-Val, L-Leu, L-Ile, L-Phe, and L-Pro is reported. Their self-assembly in bulk and in solution and the structural
and retrostructural analysis of their periodic assemblies were compared to those of the previously reported
and currently reinvestigated dendritic dipeptides with X ) L-Ala. All dendritic dipeptides containing as X
nonpolar R-amino acids self-assemble into helical porous columns. The substituent of X programs the
structure of the helical pore and the resulting periodic array, in spite of the fact that its molar mass represents
only between 0.05 and 4.77% from the molar mass of the dendritic dipeptide. In addition to the various
2-D columnar lattices, the dendritic dipeptides based on L-Ala, L-Leu, and L-Phe self-organize into 3-D
hexagonal columnar crystals while those based on L-Val and L-Ile into an unknown columnar crystal. The
principles via which the aliphatic and aromatic substituents of X program the structure of the helical pores
indicate synthetic pathways to helical pores with bioinspired functions based on artificial nonpolar R-amino
acids.
Introduction
fluid membrane environment and in the solid state. However,
with few exceptions, porous protein mimics do not assemble
9
Natural porous proteins function as viral helical coats,1
into periodically ordered structures that are stable in solution
and in the solid state. This behavior limits their structural
analysis by combinations of solution and solid-state comple-
mentary techniques. Recently, our laboratory elaborated a new
strategy to helical porous protein mimics that is based on the
transmembrane channels responsible for ion regulation and
transport, molecular recognition and response, and energy
2
3
4
5
transduction, antibiotics, antimicrobials, and toxins. Remod-
eled porous proteins are used for reversible encapsulation of
molecules6 and in stochastic sensing.7 Integral membrane
10
self-assembly of amphiphilic dendritic dipeptides. The internal
structure and stability of the porous structure self-assembled
from dendritic dipeptides are programmed by the stereochem-
proteins, including those functioning as transmembrane channels,
exist in very low natural abundance, and since they form three-
dimensional functional structures only in the membrane envi-
ronment, their crystallization had limited success. Therefore,
the molecular details of their structure and function are not well
(
8) (a) Nolte, R. J. M.; van Beijnen, A. J. M.; Neevel, J. G.; Zwikker, J. W.;
Verkley, A. J.; Drenth, W. Isr. J. Chem. 1984, 24, 297-301. (b) Jullien,
L.; Lehn, J.-M. Tetrahedron Lett. 1988, 29, 3803-3806. (c) Cross, G. G.;
Fyles, T. M.; James, T. D.; Zojaji, M. Synlett 1993, 7, 449-460. (d) Gokel,
G. W.; Ferdani, R.; Liu, J.; Pajewski, R.; Shabany, H.; Uetrecht, P. Chem.s
Eur. J. 2001, 7, 33-39. (e) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri,
M. R. Angew. Chem., Int. Ed. 2001, 40, 988-1011. (f) Sakai, N.; Mareda,
J.; Matile, S. Acc. Chem. Res. 2005, 38, 79-87. (g) Rosselli, S.; Ramminger,
A.-D.; Wagner, T.; Silier, B.; Wiegand, S.; H a¨ ussler, W.; Lieser, G.;
Scheumann, V.; H o¨ ger, S. Angew. Chem., Int. Ed. 2001, 40, 3138-3141.
(h) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
ReV. 2001, 101, 3893-4012. (i) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. J.
Am. Chem. Soc. 2002, 124, 11064-11072. (j) Hecht, S.; Khan, A. Angew.
Chem., Int. Ed. 2003, 42, 6021-6024. (k) Couet, J.; Jeyaprakash, J. D.;
Samuel, S.; Kopyshev, A.; Santer, S.; Biesalski, M. Angew. Chem., Int.
Ed. 2005, 44, 3297-3301.
2
,3
understood. Simple synthetic assemblies that mimic the
structure and function of transmembrane channels are expected
to contribute to the understanding of the structure and function
of the more complex natural proteins. Strategies for the synthesis
and assembly of porous or tubular supramolecular structures
8
have been elaborated. Natural porous proteins are stable in the
†
Department of Chemistry.
Department of Physics and Astronomy.
‡
(
1) (a) Klug, A. Angew. Chem., Int. Ed. Engl. 1983, 22, 565-582. (b) Klug,
A. Philos. Trans. R. Soc. London, Ser. B 1999, 354, 531-535.
2) (a) MacKinnon, R. Angew. Chem., Int. Ed. 2004, 43, 4265-4277. (b) Agre,
P. Angew. Chem., Int. Ed. 2004, 43, 4278-4290.
(9) (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.;
Khazanovich, N. Nature 1993, 366, 324-327. (b) Petitjean, A.; Cuccia,
L. A.; Lehn, J.-M.; Nierengarten, H.; Schmutz, M. Angew. Chem., Int. Ed.
2002, 41, 1195-1198. (c) Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D.
Chem.sEur. J. 1999, 5, 3471-3481. (d) Schmitt, J.-L.; Stadler, A.-M.;
Kyritsakas, N.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 1598-1624. (e)
Schmitt, J.-L.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 3417-3426.
(10) (a) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal,
J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.;
Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-
768. (b) Rouhi, M. Chem. Eng. News 2004, 82 (33), 4. (c) Borman, S.
Chem. Eng. News 2004, 82 (51), 53-61.
(
(
(
3) Wallace, B. A. Biophys. J. 1986, 49, 295-306.
4) (a) Zasloff, M. Nature 2002, 415, 389-395. (b) White, S. H.; Winley, W.
C.; Selsted, M. E. Curr. Opin. Struct. Biol. 1995, 5, 521-527.
5) (a) Gouaux, E. J. Struct. Biol. 1998, 121, 110-122. (b) Gouaux, E. Curr.
Opin. Struct. Biol. 1997, 7, 566-573.
(
(
(
6) Bayley, H.; Cremer, P. S. Nature 2001, 413, 226-230.
7) (a) Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.;
Aida, T. Nature 2003, 423, 628-632. (b) Douglas, T.; Young, M. Science
2
006, 312, 873-875.
5992
9
J. AM. CHEM. SOC. 2007, 129, 5992-6002
10.1021/ja071088k CCC: $37.00 © 2007 American Chemical Society