FULL PAPER
(m, 3 H, Ph), 7.78 (dd, J = 7.3, J = 5.9 Hz, 1 H, 6-H), 8.32 (t, J = CCDC-980195 (for 1) and CCDC-980196 (for 2) contain the sup-
7.3 Hz, 1 H, 7-H), 8.42 (d, J = 7.3 Hz, 1 H, 8-H), 8.52 (d, J = plementary crystallographic data for this paper. These data can be
5.9 Hz, 1 H, 5-H) ppm.
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
5,7-Dimethyl-3-phenyl-2,3-dihydro[1,3]tellurazolo[3,2-a]pyrimidine-
4-ium Chloride (4): The yield of yellow crystals was 75%, m.p. 122–
124 °C. C14H15ClN2Te (374.34): calcd. C 44.92, H 4.04; found C
Supporting Information (see footnote on the first page of this arti-
cle): Full crystal data, NMR, Raman and IR spectra and details
of the quantum-chemical calculations.
1
44.87, H 4.01. H NMR (600 MHz, [D6]DMSO, Me4Si, 298 K): δ
= 2.53 and 2.63 (s, 6 H, 2CH3); 3.19 (d, J = 11.7 Hz, 1 H, 2-H);
4.80 (dd, J = 11.7, J = 7.3 Hz, 1 H, 2-H); 6.75 (d, J = 7.3 Hz, 1 H, Acknowledgments
3-H); 7.20 (m, 2 H, Ph); 7.42 (m, 3 H, Ph); 7.64 (s, 1 H, 6-H) ppm.
The authors thank the Russian Foundation for Basic Research
exo-cis-9-Tellurium-3-azoniatetracyclo[9.2.1.02,10.03,8]tetradeca-
3(8),4,6-triene Chloride (5): The yield of yellow crystals was 95%,
m.p. 230–232 °C. C12H14ClNTe (335.30): calcd. C 42.99, H 4.21;
found C 42.88, H 4.15. 1H NMR (600 MHz, [D6]DMSO, Me4Si,
298 K): δ = 1.34 (d, J = 10.8 Hz, 1 H, Hsyn14), 1.39 (m, 1 H, 12-
H), 1.52 (m, 1 H, 12-H), 1.68 (d, J = 10.8 Hz, 1 H, Hanti14), 1.71
(m, 2 H, 13-H), 2.61 (s, 1 H, 11-H), 2.82 (s, 1 H, 1-H), 4.12 (d, J
= 8.4 Hz, 1 H, 10-H), 5.32 (d, J = 8.4 Hz, 1 H, 2-H), 7.70 (dd, J
= 7.5, J = 6.2 Hz, 1 H, 5-H), 8.01 (dd, J = 8.0, J = 7.5 Hz, 1 H,
6-H), 8.20 (d, J = 8.0 Hz, 1 H, 7-H), 8.93 (d, J = 6.2 Hz, 1 H, 4-
H) ppm. 13C NMR (150 MHz, CD2Cl2, Me4Si, 298 K): δ = 25.71
(C12), 29.41 (C13), 31.84 (C14), 32.84 (C10), 45.97 (C11), 48.16
(C1), 82.78 (C2), 123.99 (C5), 132.61 (C7), 141.45 (C6), 145.22
(C4) ppm.
(grant number 14-03-00914) and the Russian Academy of Sciences
in the framework of the program “Theoretical and experimental
study of chemical bonding and mechanisms of chemical reactions
and processes” for financial support of this work. Dr. Y. V. Zubav-
ichus is thanked for fruitful discussions.
[1] V. N. Khrustalev, Sh. R. Ismaylova, R. R. Aysin, Zn. V. Matsu-
levich, V. K. Osmanov, A. S. Peregudov, A. V. Borisov, Eur. J.
Inorg. Chem. 2012, 5456–5460.
[2] K. K. Bhasin, V. Arora, T. M. Klapotke, M.-J. Crawford, Eur.
J. Inorg. Chem. 2004, 4781–4788.
[3] A. V. Borisov, Zn. V. Matsulevich, V. K. Osmanov, G. N. Bo-
risova, A. O. Chizhov, G. Z. Mammadova, A. M. Maharra-
mov, R. R. Aysin, V. N. Khrustalev, Russ. Chem. Bull. 2013,
62, 2245–2249 (Russ. Chem. Bull. Int. Ed. 2013, 62, in press).
[4] a) L. Engman, A. Wojton, B. J. Oleksyn, J. Sliwinski, Phos-
phorus Sulfur Silicon Relat. Elem. 2004, 179, 285–292; b) S.
Kumar, H. B. Singh, G. Wolmershauser, J. Organomet. Chem.
2005, 690, 3149–3153.
[5] a) N. Kuhn, G. Henkel, T. Kratz, Chem. Ber. 1993, 126, 2047–
2049; b) A. J. Arduengo, F. Davidson, H. V. R. Dias, J. R. Go-
erlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am.
Chem. Soc. 1997, 119, 12742–12749; c) G. M. Li, R. A. Zin-
garo, M. Segi, J. H. Reibenspies, T. Nakajima, Organometallics
1997, 16, 756–762; d) Y. Mutoch, T. Murai, S. Yamago, J. Or-
ganomet. Chem. 2007, 692, 129–135; e) S. T. Manjare, S.
Sharma, H. B. Singh, R. J. Butcher, J. Organomet. Chem. 2012,
717, 61–74; f) R. Thirumoorthi, T. Chivers, Polyhedron 2013,
53, 230–234.
[6] S. S. dos Santos, B. N. Cabral, U. Abram, E. S. Lang, J. Or-
ganomet. Chem. 2013, 723, 115–121.
[7] J. Beckmann, S. Heitz, M. Hesse, Inorg. Chem. 2007, 46, 3275–
3282.
[8] A. V. Iogansen, S. A. Kiselev, B. V. Rassadin, A. A. Samo-
ilenko, J. Struct. Chem. 1976, 17, 546–552.
[9] A. V. Iogansen, Spectrochim. Acta Part A 1999, 55, 1585–1612.
[10] A. V. Iogansen, in: Vodorodnya svyazЈ (Hydrogen Bond) (Ed.:
N. D. Sokolov), Nauka, Moscow, 1981, p. 118 [in Russian].
[11] R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clar-
endon Press, Oxford, UK, 1990.
exo-cis-4,6-Dimethyl-9-tellurium-3-azonia-7-azatetracyclo-
[9.2.1.02,10.03,8]tetradeca-3(8),4,6-triene Chloride (6): The yield of
yellow crystals was 79%, m.p. 136–138 °C. C13H17ClN2Te (364.34):
calcd. C 42.86, H 4.70; found C 42.78, H 4.62. 1H NMR (600 MHz,
[D6]DMSO, Me4Si, 298 K): δ = 1.40 (m, 1 H, 12-H), 1.47 (d, J =
11.0 Hz, 1 H, Hsyn14), 1.60 (m, 1 H, 12-H), 1.81 (m, 2 H, 13-H),
2.10 (d, J = 11.0 Hz, 1 H, Hanti14), 2.52 and 2.75 (s, 6 H, 2CH3),
2.61 (s, 1 H, 11-H), 2.71 (s, 1 H, 1-H), 4.30 (d, J = 8.8 Hz, 1 H,
10-H), 5.22 (d, J = 8.8 Hz, 1 H, 2-H), 7.58 (s, 1 H, 5-H) ppm.
Crystal Data for 1 at 100 K: C5H5NCl2Te (Mr = 277.60), mono-
clinic, space group P21/c, a = 12.0195(9) Å, b = 7.0071(5) Å, c =
9.5895(7) Å, β = 104.071(1)°, V = 783.41(10) Å3, Z = 4, ρcalcd.
=
2.354 gcm–3, μ = 4.389 mm–1, Bruker SMART APEX-II CCD dif-
fractometer, graphite monochromator, λ(Mo-Kα) = 0.71073 Å. A
total of 9643 reflections were collected in the θ range of 1.75–30.00°
with 2274 being unique (Rint = 0.0375). A semi-empirical absorp-
tion correction was applied based on the intensities of equivalent
reflections (Tmin = 0.353, Tmax = 0.668). Least-squares refinement
on 85 parameters converged normally with R1 [I Ͼ 2σ(I)] = 0.0380
(2151 reflections), wR2 (all data) = 0.1039, GOF = 1.001.
Crystal Data for 2 at 100 K: C6H8N2Cl2Te (Mr = 306.64), mono-
clinic, space group P21/n, a = 6.5102(6) Å, b = 12.6556(12) Å, c =
11.8465(11) Å, β = 97.857(2)°, V = 966.88(16) Å3, Z = 4, ρcalcd.
= 2.107 gcm–3, μ = 3.570 mm–1, Bruker SMART APEX-II CCD
diffractometer, graphite monochromator, λ(Mo-Kα) = 0.71073 Å.
A total of 10218 reflections were collected in the θ range of 2.37–
27.96° with 2320 being unique (Rint = 0.0441). A semi-empirical
absorption correction was applied based on the intensities of equiv-
alent reflections (Tmin = 0.507, Tmax = 0.635). Least-squares refine-
ment on 102 parameters converged normally with R1 [I Ͼ 2σ(I)] =
0.0280 (1908 reflections), wR2 (all data) = 0.0584, GOF = 1.002.
[12] A. V. Borisov, Zh. V. Matsulevich, G. K. Fukin, E. V. Baranov,
Russ. Chem. Bull. Int. Ed. 2010, 59, 581–583.
[13] a) A. V. Borisov, Zh. V. Matsulevich, Chem. Heterocycl.
Compd. 2009, 45, 884–885; b) A. V. Borisov, Zh. V. Matsulev-
ich, V. K. Osmanov, G. N. Borisova, V. I. Naumov, G. Z. Mam-
madova, A. M. Maharramov, V. N. Khrustalev, V. V. Kachala,
Russ. Chem. Bull. 2012, 61, 91–94.
[14] P. Granger, S. Chapelle, W. R. McWhinnie, A. Al-Rubaie, J.
Organomet. Chem. 1981, 220, 149–158.
Received: April 9, 2014
Published Online: June 26, 2014
Eur. J. Inorg. Chem. 2014, 3582–3586
3586
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim