Inorganic Chemistry
Article
dried and dissolved in acetonitrile and kept for crystallization; after a
few days red crystals were obtained suitable for X-ray analysis. Yield:
113, 995−1015. (c) Andrews, M. B.; Cahill, C. L. Uranyl bearing
hybrid materials: synthesis, speciation, and solid-state structures.
Chem. Rev. 2013, 113, 1121−1136.
(3) (a) Gorden, A. E. V.; Xu, J.; Raymond, K. N.; Durbin, P.
Rational design of sequestering agents for plutonium and other
actinides. Chem. Rev. 2003, 103, 4207−4282. (b) Hancock, R. D.;
Martell, A. E. Ligand design for selective complexation of metal ions
in aqueous solution. Chem. Rev. 1989, 89, 1875−1914.
4
2
0%; mp >200 °C; Anal. Calcd. for C H N O S U : C, 31.59; H,
34 32 4 16 2 2
.49; N, 4.33; Found: C, 31.46; H, 2.41; N, 4.29; IR (KBr pellet): ν
−
1
(in cm ) 3434, 3061, 2927, 2362, 1659, 1555, 1482, 1375, 1318,
1
251, 1190, 1045, 927, 881, 798, 744, 682, 604, 563, 492.
Synthesis of UO (VI) Complex (4). A solution of UO (OAc) ·
2
2
2
2
H O (1.2 mmol) in acetonitrile (2 mL) was added to a solution of L
2
(1.0 mmol) in acetonitrile (8 mL), and a similar procedure as
(4) (a) Lan, T.; Wang, H.; Liao, J.; Yang, Y.; Chai, Z.; Liu, N.; Wang,
D. Dynamics of humic acid and its interaction with uranyl in the
presence of hydrophobic surface implicated by molecular dynamics
simulations. Environ. Sci. Technol. 2016, 50, 11121−11128. (b) Stew-
art, B. D.; Cismasu, A. C.; Williams, K. H.; Peyton, B. M.; Nico, P. S.
Reactivity of uranium and ferrous iron with natural iron oxy-
hydroxides. Environ. Sci. Technol. 2015, 49, 10357−10365. (c) Gorden,
A. E. V.; DeVore, M. A., II; Maynard, B. A. Coordination chemistry
with f-element complexes for an improved understanding of factors
that contribute to extraction Selectivity. Inorg. Chem. 2013, 52, 3445−
described above was adopted. The precipitate was dissolved in
acetonitrile, filtered, and kept for crystallization. After few days, yellow
crystals formed which were suitable for X-ray analysis. Yield: 37%; mp
>
200 °C; Anal. Calcd. for C H N O S U : C, 35.41; H, 3.13; N,
38 40 2 14 2 2
1
−
2.17; Found: C, 35.34; H, 3.06; N, 2.10; IR (KBr pellet): ν (in cm )
3430, 3057, 2925, 2865, 2362, 1658, 1553, 1484, 1374, 1251, 1190,
1048, 924, 819, 795, 743, 680, 602, 499, 426.
ASSOCIATED CONTENT
* Supporting Information
■
S
3
(
458.
5) (a) Knope, K. E.; Soderholm, L. Solution and solid-state
structural chemistry of actinide hydrates and their hydrolysis and
condensation products. Chem. Rev. 2013, 113, 944−994. (b) Qiu, J.;
Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide
bridges. Chem. Rev. 2013, 113, 1097−1120.
Experimental details and spectroscopic data (PDF)
(
6) Altmaier, M.; Gaona, X.; Fanghan
aqueous actinide chemistry and thermodynamics. Chem. Rev. 2013,
13, 901−943. (b) Geckeis, H.; Lutzenkirchen, J.; Polly, R.; Rabung,
̈
el, T. Recent advances in
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
1
̈
T.; Schmidt, M. Mineral−water interface reactions of actinides. Chem.
Rev. 2013, 113, 1016−1062. (c) Knope, K. E.; Soderholm, L. Solution
and solid-state structural chemistry of actinide hydrates and their
hydrolysis and condensation products. Chem. Rev. 2013, 113, 944−
9
(
94.
7) (a) Zanonato, P. L.; Di Bernardo, P.; Bismondo, A.; Liu, G.;
Chen, X.; Rao, L. Hydrolysis of Uranium(VI) at variable temperatures
10−85 °C). J. Am. Chem. Soc. 2004, 126, 5515−5522. (b) Muller, K.;
AUTHOR INFORMATION
■
(
̈
Brendler, V.; Foerstendorf, H. Aqueous Uranium(VI) hydrolysis
species characterized by attenuated total reflection fourier-transform
infrared spectroscopy. Inorg. Chem. 2008, 47, 10127−10134.
*
ORCID
(c) Quach, D. L.; Wai, C. M.; Pasilis, S. P. Characterization of
Notes
The authors declare no competing financial interest.
Uranyl(VI) nitrate complexes in a room temperature ionic liquid
using attenuated total reflection-fourier transform infrared spectrom-
etry. Inorg. Chem. 2010, 49, 8568−8572. (d) Quiles, F.; Nguyen-
̀
Trung, C.; Carteret, C.; Humbert, B. Hydrolysis of Uranyl(VI) in
Acidic and Basic Aqueous Solutions Using a Noncomplexing Organic
Base: A Multivariate Spectroscopic and Statistical Study. Inorg. Chem.
ACKNOWLEDGMENTS
■
We thank UGC, India, for financial support and FIST and
IITD for X-ray diffraction instrumentation. The authors are
grateful to Prof. Raymond J. Butcher (Howard University) and
Dr. Yoshiaki Tanabe (Tokyo University) for determining the
crystal structure of the complexes. We also acknowledge Prof.
Namakkal Govind Ramesh (IITD) for fruitful discussion.
2
011, 50, 2811−2823. (e) Drobot, B.; Bauer, A.; Steudtner, R.;
Tsushima, S.; Bok, F.; Patzschke, M.; Raff, J.; Brendler, V. Speciation
studies of metals in trace concentrations: the mononuclear uranyl(VI)
hydroxo complexes. Anal. Chem. 2016, 88, 3548−3555. (f) Bader, M.;
Rossberg, A.; Steudtner, R.; Drobot, B.; Großmann, K.; Schmidt, M.;
Musat, N.; Stumpf, T.; Ikeda-Ohno, A.; Cherkouk, A. Impact of
haloarchaea on speciation of uranium-a multispectroscopic approach.
Environ. Sci. Technol. 2018, 52, 12895−12904.
REFERENCES
■
(
1) (a) Albrecht-Schmitt, T. E. Actinide chemistry at the extreme.
(8) (a) Bart, S. C.; Anthon, C.; Heinemann, F. W.; Bill, E.; Edelstein,
N. M.; Meyer, K. Carbon dioxide activation with sterically pressured
mid- and high-valent uranium complexes. J. Am. Chem. Soc. 2008, 130,
12536−12546. (b) Bart, S. C.; Heinemann, F. W.; Anthon, C.;
Hauser, C.; Meyer, K. A New Tripodal ligand system with steric and
electronic modularity for uranium coordination chemistry. Inorg.
Chem. 2009, 48, 9419−9426. (c) Pattenaude, S. A.; Coughlin, E. J.;
Collins, T. S.; Zeller, M.; Bart, S. C. Expanding the library of uranyl
amide derivatives: new complexes featuring the tert-butyldimethylsi-
lylamide ligand. Inorg. Chem. 2018, 57, 4543−4549.
(9) (a) Matson, E. M.; Fanwick, P. E.; Bart, S. C. Formation of
trivalent U−C, U−N, and U−S bonds and their reactivity toward
carbon dioxide and acetone. Organometallics 2011, 30, 5753−5762.
(b) Matson, E. M.; Breshears, A. T.; Kiernicki, J. J.; Newell, B. S.;
Fanwick, P. E.; Shores, M. P.; Walensky, J. R.; Bart, S. C. Trivalent
Uranium phenylchalcogenide complexes: exploring the bonding and
Inorg. Chem. 2019, 58, 1721−1723. (b) Abney, C. W.; Mayes, R. T.;
Saito, T.; Dai, S. Materials for the recovery of uranium from seawater.
Chem. Rev. 2017, 117, 13935−14013. (c) Beltrami, D.; Cote, G.;
Mokhtari, H.; Courtaud, B.; Moyer, B. A.; Chagnes, A. Recovery of
uranium from wet phosphoric acid by solvent extraction processes.
Chem. Rev. 2014, 114, 12002−12023. (d) Mayer, K.; Wallenius, M.;
Varga, Z. Nuclear forensic science: correlating measurable material
parameters to the history of nuclear material. Chem. Rev. 2013, 113,
8
84−900. (e) Burns, P. C.; Ewing, R. C.; Navrotsky, A. Nuclear fuel
in a reactor accident. Science 2012, 335, 1184−1188. (f) Awwal, M.
A.; Carswell, D. J. Aqueous repossessing of reactor fuel. Chem. Rev.
1
(
2
966, 66, 279−295.
2) (a) Nitsche, H. Introduction to nuclear chemistry. Chem. Rev.
013, 113, 855−857. (b) Walther, A.; Denecke, M. A. Actinide
colloids and particles of environmental concern. Chem. Rev. 2013,
F
Inorg. Chem. XXXX, XXX, XXX−XXX