1,2,4-Thiadiazoles by Oxidative Dimerization of Carbothioamides
of the reaction, the mixture was filtered, the inorganic solids on
the filter were washed with CH2Cl2, and then the combined solu-
tion was evaporated in vacuo. The residue was separated by column
chromatography (hexane/ethyl acetate = 1:3 or 1:5) to afford ana-
lytically pure thiadiazole 2.
selenadiazole by replacing thiobenzamide with benzo-
selenoamide. Fortunately, our optimized reaction condi-
tions worked for the efficient preparation of 1,2,4-selenadi-
azole 4 by dimerization of benzoselenoamide 3 in quantita-
tive yield [Scheme 1, Equation (1)]. This reaction has also
been performed by using hypervalent iodine reagents[12a]
and other oxidants.[12b] As expected, the reaction of benz-
amide 5 under our conditions did not afford the correspond-
ing dimerization product, and reactant 5 was recovered
from the reaction mixture [Scheme 1, Equation (2)].
3,5-Diphenyl-1,2,4-thiadiazole (2a): Reaction of thiobenzamide 1a
(69 mg, 0.50 mmol) according to the general procedure afforded 2a
(57 mg, 95%) as a white microcrystalline solid. Colorless needles
(recrystallized from dichloromethane/hexane), m.p. 89.8–90.2 °C
(ref.[13] m.p. 89–90 °C). IR (KBr): ν = 3060, 3036, 1508, 1482, 1440,
˜
1
1423, 1331, 1274, 1248 cm–1. H NMR (500 MHz, [D6]acetone): δ
= 8.44–8.37 (m, 2 H), 8.19–8.11 (m, 2 H), 7.69–7.52 (m, 6 H) ppm.
13C NMR (125 MHz, [D6]acetone): δ = 189.3, 174.4, 133.8, 133.1,
131.4, 131.4, 130.4, 129.7, 129.0, 128.3 ppm.
Supporting Information (see footnote on the first page of this arti-
cle): General experimental remarks, experimental details, and spec-
tra of the products.
Acknowledgments
Scheme 1. Dimerization reactions of benzoselenoamide and benz-
amide.
This work was supported by a research grant from the US National
Science Foundation (CHE-1262479).
Finally, we investigated the cross-dimerization reaction
by using benzothioamides 1b and 1g (Scheme 2). Unfortu- [1] D. Wilkins, Comprehensive Heterocyclic Chemistry III (Eds.:
A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Tay-
lor, V. V. Zhdankin), Elsevier, Oxford, UK, 2008, vol. 5, p. 487–
512.
nately, corresponding self-dimerization compounds 2b and
2g were obtained as major products and cross-dimerization
compounds 6a and 6b were isolated as minor products.
[2] a) Y. Li, J. Geng, Y. Liu, S. Yu, G. Zhao, ChemMedChem 2013,
8, 27–41; b) T. F. Tam, R. Leung-Toung, W. Li, M. Spino, K.
Karimian, Mini-Rev. Med. Chem. 2005, 5, 367–379; c) R.
Leung-Toung, J. Wodzinska, W. Li, J. Lowrie, R. Kukreja, D.
Desilets, K. Karimian, T. F. Tam, Bioorg. Med. Chem. 2003,
11, 5529–5537.
[3] a) A. R. Katritzky, C. A. Ramsden, J. A. Joule, V. V. Zhdankin
(Eds.), Handbook of Heterocyclic Chemistry, 3rd ed., Elsevier,
Oxford, UK, 2010; b) A. Lanzafame, A. Christopoulos, J.
Pharmacol. Exp. Ther. 2004, 308, 830–837; c) A. Castro, T. Cas-
tano, A. Encinas, W. Porcal, C. Gil, Bioorg. Med. Chem. 2006,
14, 1644–1652; d) A. M. Lewandowicz, J. Vepsaelaeinen, J. T.
Laitinen, Br. J. Pharmacol. 2006, 147, 422–429; e) L. Shen, Y.
Zhang, A. Wang, E. Sieber-McMaster, X. Chen, P. Pelton, J. Z.
Xu, M. Yang, P. Zhu, L. Zhou, M. Reuman, Z. Hu, R. Russell,
A. C. Gibbs, H. Ross, K. Demarest, W. V. Murray, G.-H. Kuo,
Scheme 2. Cross-dimerization reaction with the use of 1b and 1g.
J. Med. Chem. 2007, 50, 3954–3963; f) A. S. Mayhoub, L.
Marler, T. P. Kondratyuk, E.-J. Park, J. M. Pezzuto, M. Cush-
man, Bioorg. Med. Chem. 2012, 20, 510–520.
[4] a) V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation,
Structure, and Synthetic Applications of Polyvalent
Iodine Compounds, Wiley, Chichester, UK, 2013; b) M. S. Yu-
subov, V. V. Zhdankin, Curr. Org. Synth. 2012, 9, 247–272;
c) A.-u.-H. A. Shah, Z. A. Khan, N. Choudhary, C. Loholter,
S. Schafer, G. P. L. Marie, U. Farooq, B. Witulski, T. Wirth,
Org. Lett. 2009, 11, 3578–3581; d) M. Yan, Z.-C. Chen, Q.-G.
Zheng, J. Chem. Res. Synop. 2003, 618–619; e) D.-P. Cheng,
Z.-C. Chen, Synth. Commun. 2002, 32, 2155–2159; f) E. A. Ma-
maeva, A. A. Bakibaev, Tetrahedron 2003, 59, 7521–7525; g)
P. C. Patil, D. S. Bhalerao, P. S. Dangate, K. G. Akamanchi,
Tetrahedron Lett. 2009, 50, 5820–5822; h) P. B. Thorat, B. Y.
Bhong, N. N. Karade, Synlett 2013, 24, 2061–2066.
Conclusions
In conclusion, we developed an oxidative dimerization
reaction for the synthesis of 1,2,4-thiadiazoles by using
Oxone as a readily available, inexpensive, safe, and environ-
mentally benign oxidant under mild conditions. This conve-
nient procedure gives good results for the dimerization of
substituted thiobenzamides, carbothiamidess and phenyl-
selenamide.
[5] a) N. X. Hu, Y. Aso, T. Otsubo, F. Ogura, Chem. Lett. 1985,
603–606; b) N. X. Hu, Y. Aso, T. Otsubo, F. Ogura, Bull. Chem.
Soc. Jpn. 1986, 59, 879–884; c) M. T. M. El-Wassimy, K. A.
Jørgensen, S. O. Lawesson, Tetrahedron 1983, 39, 1729–1734;
d) Y. Xu, J. Chen, W. Gao, H. Jin, J. Ding, H. Wu, J. Chem.
Res. 2010, 34, 151–153; e) Y. Takikawa, K. Shimada, K. Sato,
S. Sato, S. Takizawa, Bull. Chem. Soc. Jpn. 1985, 58, 995–999.
Experimental Section
General Procedure for the Synthesis of Thiadiazoles: Oxone
(1 mmol) was added to a solution of thioamide 1 (0.5 mmol) in
CH2Cl2 (2 mL). The reaction mixture was stirred at room tempera-
ture or 40 °C for 24 to 72 h (control by TLC). Upon completion
Eur. J. Org. Chem. 2014, 5149–5152
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5151