10.1002/anie.202013911
Angewandte Chemie International Edition
COMMUNICATION
Adv. 2017, 7, 24828–24832.
azide handle onto native human IgG1s. This handle was applied
for conjugation to DBCO functionalized cargos. This allowed for
fabrication of antibody PEG, fluorophore and DNA conjugates, but
it could in theory be used for most functionalities with a DBCO
handle. The methodology is simple and mild, since it only requires
the addition of one component in low stoichiometry at standard
conditions and requires no elaborate laboratory techniques. Also,
it produces conjugates with better homogeneity than the
commonly used NHS-ester. Generally, the conversions of mono
and double labeled antibodies are around 38% and 14%,
respectively. The methodology exhibited robustness as five
different IgG1s and one IgG4 antibody was labeled with similar
conversion. Reducing SDS-PAGE and MS studies confirm that
labeling occurs primarily on the HC. From MS studies it was also
found that generally 3-4 major labeling sites were found for each
antibody. All five labeled IgG1s were found to retain epitope
binding with either flow cytometry or BLI.
[14]
M. R. Mortensen, M. B. Skovsgaard, A. H. Okholm, C. Scavenius,
D. M. Dupont, C. B. Rosen, J. J. Enghild, J. Kjems, K. V. Gothelf,
Bioconjug. Chem. 2018, 29, 3016–3025.
M. R. Mortensen, M. B. Skovsgaard, K. V. Gothelf, ChemBioChem
2019, 20, 2711–2728.
[15]
[16]
[17]
[18]
[19]
Y. Koshi, E. Nakata, M. Miyagawa, S. Tsukiji, T. Ogawa, I.
Hamachi, J. Am. Chem. Soc. 2008, 130, 245–251.
T. Tamura, Z. Song, K. Amaike, S. Lee, S. Yin, S. Kiyonaka, I.
Hamachi, J. Am. Chem. Soc. 2017, 139, 14181–14191.
T. Tamura, T. Ueda, T. Goto, T. Tsukidate, Y. Shapira, Y.
Nishikawa, A. Fujisawa, I. Hamachi, Nat. Commun. 2018, 9, 1–12.
S. Wakayama, S. Kiyonaka, I. Arai, W. Kakegawa, S. Matsuda, K.
Ibata, Y. L. Nemoto, A. Kusumi, M. Yuzaki, I. Hamachi, Nat.
Commun. 2017, 8, DOI 10.1038/ncomms14850.
T. Nielsen, A. Märcher, Z. Drobňáková, M. Hučko, M. Štengl, V.
Balšánek, C. Wiberg, P. F. Nielsen, T. E. Nielsen, K. V. Gothelf, et
al., Org. Biomol. Chem. 2020, 18, 4717–4722.
N. Forte, I. Benni, K. Karu, V. Chudasama, J. R. Baker, Chem. Sci.
2019, 10, 10919–10924.
C. B. Rosen, A. L. B. Kodal, J. S. Nielsen, D. H. Schaffert, C.
Scavenius, A. H. Okholm, N. V. Voigt, J. J. Enghild, J. Kjems, T.
Tørring, et al., Nat. Chem. 2014, 6, 804–809.
S. H. Uchinomiya, H. Nonaka, S. H. Fujishima, S. Tsukiji, A. Ojida,
I. Hamachi, Chem. Commun. 2009, 5880–5882.
A. L. B. Kodal, C. B. Rosen, M. R. Mortensen, T. Tørring, K. V.
Gothelf, ChemBioChem 2016, 17, 1338–1342.
S. R. Adusumalli, D. G. Rawale, U. Singh, P. Tripathi, R. Paul, N.
Kalra, R. K. Mishra, S. Shukla, V. Rai, J. Am. Chem. Soc. 2018, 140,
15114–15123.
S. R. Adusumalli, D. G. Rawale, K. Thakur, L. Purushottam, N. C.
Reddy, N. Kalra, S. Shukla, V. Rai, Angew. Chemie - Int. Ed. 2020,
59, 10332–10336.
[20]
[21]
[22]
Acknowledgements
[23]
[24]
[25]
The work is funded by the Novo Nordisk foundation (CEMBID)
(Grant Number NNF17OC0028070).
Conflict of interest
[26]
The authors declare no conflict of interest.
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
V. Irani, A. J. Guy, D. Andrew, J. G. Beeson, P. A. Ramsland, J. S.
Richards, Mol. Immunol. 2015, 67, 171–182.
A. Dal Corso, M. Catalano, A. Schmid, J. Scheuermann, D. Neri,
Angew. Chemie - Int. Ed. 2018, 57, 17178–17182.
J. Crugeiras, A. Rios, E. Riveiros, J. P. Richard, J. Am. Chem. Soc.
2009, 131, 15815–15824.
G. S. Remya, C. H. Suresh, Phys. Chem. Chem. Phys. 2016, 18,
20615–20626.
M. Shahamirian, H. Szatylowicz, T. M. Krygowski, Struct. Chem.
2017, 28, 1563–1572.
L. Wang, G. Amphlett, W. A. Blättler, J. M. Lambert, W. Zhang,
Protein Sci. 2005, 14, 2436–2446.
J. Wiener, D. Kokotek, S. Rosowski, H. Lickert, M. Meier, Sci. Rep.
2020, 10, 1–11.
G. Vidarsson, G. Dekkers, T. Rispens, Front. Immunol. 2014, 5, 1–
17.
Keywords: IgG1 • antibody • Site-directed • labeling •
fluorophore
[1]
E. B. Ehlerding, H. J. Lee, D. Jiang, C. A. Ferreira, C. D. Zahm, P.
Huang, J. W. Engle, D. G. McNeel, W. Cai, Am. J. Cancer Res.
2019, 9, 53–63.
[2]
[3]
[4]
P. O. Krutzik, J. M. Irish, G. P. Nolan, O. D. Perez, Clin. Immunol.
2004, 110, 206–221.
R. Pal, H. Kang, H. S. Choi, A. T. N. Kumar, Clin. Cancer Res. 2019,
25, 6653–6661.
A. Younes, N. L. Bartlett, J. P. Leonard, D. A. Kennedy, C. M.
Lynch, E. L. Sievers, A. Forero-Torres, N. Engl. J. Med. 2010, 363,
1812–1821.
[5]
[6]
H. Andresen, C. Grötzinger, K. Zarse, O. J. Kreuzer, E.
Ehrentreich-Förster, F. F. Bier, Proteomics 2006, 6, 1376–1384.
D. Ayoub, W. Jabs, A. Resemann, W. Evers, C. Evans, L. Main, C.
Baessmann, E. Wagner-Rousset, D. Suckau, A. Beck, MAbs 2013,
5, 699–710.
[7]
[8]
[9]
A. A. Wakankar, M. B. Feeney, J. Rivera, Y. Chen, M. Kim, V. K.
Sharma, Y. J. Wang, Bioconjug. Chem. 2010, 21, 1588–1595.
S. Knutson, E. Raja, R. Bomgarden, M. Nlend, A. Chen, R.
Kalyanasundaram, S. Desai, PLoS One 2016, 11, 1–25.
S. O. Doronina, B. E. Toki, M. Y. Torgov, B. A. Mendelsohn, C. G.
Cerveny, D. F. Chace, R. L. DeBlanc, R. P. Gearing, T. D. Bovee, C.
B. Siegall, et al., Nat. Biotechnol. 2003, 21, 778–784.
C. A. Boswell, E. E. Mundo, C. Zhang, D. Bumbaca, N. R. Valle, K.
R. Kozak, A. Fourie, J. Chuh, N. Koppada, O. Saad, et al.,
Bioconjug. Chem. 2011, 22, 1994–2004.
[10]
[11]
[12]
Y. T. Adem, K. A. Schwarz, E. Duenas, T. W. Patapoff, W. J.
Galush, O. Esue, Bioconjug. Chem. 2014, 25, 656–664.
J. R. Junutula, H. Raab, S. Clark, S. Bhakta, D. D. Leipold, S. Weir,
Y. Chen, M. Simpson, S. P. Tsai, M. S. Dennis, et al., Nat.
Biotechnol. 2008, 26, 925–932.
[13]
J. P. M. Nunes, V. Vassileva, E. Robinson, M. Morais, M. E. B.
Smith, R. B. Pedley, S. Caddick, J. R. Baker, V. Chudasama, RSC
5
This article is protected by copyright. All rights reserved.