UPDATES
We are grateful for the characterization examination test
provided by Center of Testing and Analysis, Sichuan University
d) J. K. Awino, R. W. Gunasekara, Y. Zhao, J. Am.
Chem. Soc. 2016, 138, 9759–9762; e) Y. Zhao, Chem.
Eur. J. 2018, 24, 14001–14009; f) Y. Chen, J. Huang, S.
Zhang, Z. Gu, Chem. Mater. 2017, 29, 3083–3091.
[9] S. Zhang, Y. Zhao, Chem. Commun. 2012, 48, 9998–
10000.
References
[10] M. D. Arifuzzaman, Y. Zhao, ACS Catal. 2018, 8, 8154–
8161.
[11] Y. Yu, C. Lin, B. Li, P. Zhao, S. Zhang, Green Chem.
2016, 18, 3647–3655.
[1] a) V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra,
A. S. Singh, X. Chen, Chem. Rev. 2016, 116, 3086–3240;
b) D. Döhler, P. Michael, W. H. Binder, Acc. Chem. Res.
2017, 50, 2610–2620.
[2] a) O. S. Taskin, S. Dadashi-Silab, B. Kiskan, J. Weber,
Y. Yagci, Macromol, Chem. Phys. 2015, 216, 1746–
1753; b) D. Wang, D. Astruc, Chem. Soc. Rev. 2017, 46,
816–854; c) S. Kaur, V. Bhalla, M. Kumar, Chem.
Commun. 2015, 51, 526–529.
[3] a) A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev.
2012, 41, 5262–5284; b) C. Deraedt, N. Pinaud, D.
Astruc, J. Am. Chem. Soc. 2014, 136, 12092–12098;
c) C. Wang, D. Wang, S. Yu, T. Cornilleau, J. Ruiz, L.
Salmon, D. Astruc, ACS Catal. 2016, 6, 5424–5431.
[4] a) E. Ozkal, S. Özçubukçu, C. Jimeno, M. A. Pericàs,
Catal. Sci. Technol. 2012, 2, 195–200; b) M. Tavassoli,
A. Landarani-Isfahani, M. Moghadam, S. Tangestanine-
jad, V. Mirkhani, I. Mohammadpoor-Baltork, Appl.
Catal. A 2015, 503, 186–195.
[5] a) A. W. Bosman, H. M. Janssen, E. W. Meijer, Chem.
Rev. 1999, 99, 1665–1688; b) D. Astruc, L. Liang, A.
Rapakousiou, J. Ruiz, Acc. Chem. Res. 2012, 45, 630–
640. c) D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev.,
2010, 110, 1857–1959.
[12] J. Huang, L. Wang, P. Zhao, F. Xiang, J. Liu, S. Zhang,
ACS Catal. 2018, 8, 5941–5946. It should be noted that
although this work utilized the copper(0)-catalyzed
azide-alkyne cycloaddition, its main objective was to
investigate the supporting material’s morphology on the
effect of the intracellular catalytic efficiency of nano-
catalysts.
[13] H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk,
T. Yokoyama, K. Hashimoto, J. Phys. Chem. C 2009,
113, 10761–10766.
[14] C.-Y. Su, S. Liao, M. Wanner, J. Fiedler, C. Zhang, B.-S.
Kang, W. Kaim, Dalton Trans. 2003, 189–202.
[15] Y. Liu, Y. Chen, Y. Yao, K. Luo, S. Zhang, Z. Gu,
Langmuir 2017, 33, 5275–5282.
[16] a) J. Clavadetscher, S. Hoffmann, A. Lilienkampf, L.
Mackay, R. M. Yusop, S. A. Rider, J. J. Mullins, M.
Bradley, Angew. Chem. Int. Ed. 2016, 55, 15662–15666;
Angew. Chem. 2016, 128, 15891–15895; b) Y. Bai, X.
Feng, H. Xing, Y. Xu, B. K. Kim, N. Baig, T. Zhou,
A. A. Gewirth, Y. Lu, E. Oldfield, S. C. Zimmerman, J.
Am. Chem. Soc. 2016, 138, 11077–11080.
[6] a) L. Liang, J. Ruiz, D. Astruc, Adv. Synth. Catal. 2011,
353, 3434–3450; b) M. R. Decan, S. Impellizzeri, M. L.
Marin, J. C. Scaiano, Nat. Commun. 2014, 5, 4612.
[7] J. Feng, Q. Luo, Y. Chen, B. Li, K. Luo, J. Lan, Y. Yu, S.
Zhang, Bioconjugate Chem. 2018, 29, 3402–3410.
[8] a) Y. Zhao, Langmuir 2016, 32, 5703–5713; b) C. Liao,
Y. Chen, Y. Yao, S. Zhang, Z. Gu, X. Yu, Chem. Mater.
2016, 28, 7757–7764; c) F. Liu, D. He, Y. Yu, L. Cheng,
S. Zhang, Bioconjugate Chem. 2019, 30, 541–546;
[17] a) F. Wang, Y. Zhang, Z. Liu, Z. Du, L. Zhang, J. Ren,
X. Qu, Angew. Chem. Int. Ed. 2019, 58, 1–7; b) S.
Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y.
Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany,
O. C. Farokhzad, M. Mahmoudi, Chem. Soc. Rev. 2017,
46, 4218–4244.
Adv. Synth. Catal. 2019, 361, 1–7
6
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
��
These are not the final page numbers!