JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
12 F. C. Krebs, M. Jorgensen, Adv. Opt. Mater. 2014, 2, 465–
477.
exhibited broad absorptions, favorable thermal properties,
and molecular energy levels that make them promising
materials for use in PSCs. For PSC devices that are based on
PDPPMTD and PDPPBTD, PCEs in the range 1.6424.10% in
BHJ with PC61BM or PC71BM were achieved. More impor-
tantly, incorporating additional thiophene rings into the side
chains of PDPPBTD broadened the absorption spectrum and
increased the charge mobility over those for PDPPMTD. The
subtle tuning of the chemical structure of the side chains
appeared significantly to influence the Jsc and FF. The device
that was based on the PDPPBTD/PC61BM (w/w 5 1:2)
blend film had the best PCE of 4.10% with a Jsc of 14.5 mA/
cm2, a Voc of 0.59 V, and an FF of 48%. The highest PCE of
the device that was based on the PDPPMTD/PC61BM (w/w
5 1:2) blend film was 2.96%, with a Jsc of 12.6 mA/cm2, a
Voc of 0.60 V, and an FF of 39%. The increased Jsc and FF of
the PDPPBTD-based PSC apparently arose from the
enhanced light harvesting ability, carrier mobility and mor-
phology, as evidenced by EQE, SCLC, AFM and TEM measure-
ments. The findings herein provide significant insight into,
and a feasible method for the development of, a new genera-
tion of low-bandgap materials. The photovoltaic properties
of these 2D conjugated copolymers can be tuned by varying
their conjugated side chains.
ꢀ
13 M. Manceau, E. Bundgaard, J. E. Carle, O. Hagemann, M.
Helgesen, R. Søndergaard, M. Jørgensen, F. C. Krebs, J. Mater.
Chem. 2011, 21, 4132–4141.
14 M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt,
B. Andreasen, F. C. Krebs, Adv. Mater. 2012, 24, 580–612.
15 Y. Li, J. Zou, H.-L. Yip, C.-Z. Li, Y. Zhang, C.-C. Chueh, J.
Intemann, Y. Xu, P.-W. Liang, Y. Chen, A. K.-Y. Jen, Macromo-
lecules 2013, 46, 5497–5503.
16 Y. Li, C.-Y. Chang, Y. Chen, Y. Song, C.-Z. Li, H.-L. Yip, A.
K.-Y. Jen, C. Li, J. Mater. Chem. C 2013, 1, 7526–7533.
17 L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You, Y. Yang,
Adv. Mater. 2013, 25, 825–831.
18 H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R.
Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M.
M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M.
Heeney, I. McCulloch, J. Am. Chem. Soc. 2011, 133, 3272–3275.
19 E. Zhou, Q. Wei, S. Yamakawa, Y. Zhang, K. Tajima, C.
Yang, K. Hashimoto, Macromolecules 2010, 43, 821–826.
20 R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang,
B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D.
Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I.
McCulloch, Chem. Mater. 2011, 23, 768–770.
21 S. Qu, H. Tian, Chem. Commun. 2012, 48, 3039–3051.
22 Y. Lin, L. Ma, Y. Li, Y. Liu, D. Zhu, X. Zhan, Adv. Energy
Mater. 2013, 3, 1166–1170.
23 Y. Lin, Y. Li, X. Zhan, Adv. Energy Mater. 2013, 3, 724–728.
24 J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M.
Wienk, M. Turbiez, D. M. de Leeuw, R. A. J. Janssen, J. Am.
Chem. Soc. 2009, 131, 16616–16617.
ACKNOWLEDGMENTS
The financial support of the National Science Council of Taiwan
(ROC) under contract no. NSC 102-2113-M-260-006, and the
Ministry of Science and Technology, Taiwan (ROC), under
contract no. MOST 103-2113-M-260-005 is gratefully
acknowledged.
25 J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M.
J. Ko, D. H. Choi, B. Kim, J. H. Cho, Chem. Mater. 2012, 24,
1316–1323.
26 K. H. Hendrik, G. H. L. Heintges, V. S. Gevaerts, M. M.
Wienk, R. A. J. Janssen, Angew. Chem. Int. Ed. 2013, 52, 8341–
8344.
27 J. S. Ha, K. H. Kim, D. H. Choi, J. Am. Chem. Soc. 2011, 133,
10364–10367.
REFERENCES AND NOTES
ꢀ
1 S. P. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,
28 J. Yuan, X. Huang, F. Zhang, J. Lu, Z. Zhai, C. Di, Z. Jiang,
W. Ma, J. Mater. Chem. 2012, 22, 22734–22742.
D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat. Photon. 2009,
3, 297–302.
29 S. Zhang, L. Ye, Q. Wang, Z. Li, X. Guo, L. Huo, H. Fan, J.
Hou, J. Phys. Chem. C 2013, 117, 9550–9557.
2 L. Huo, J. Hou, S. Zhang, H. Y. Chen, Y. Yang, Angew. Chem.
Int. Ed. 2010, 49, 1500–1503.
30 Y. Li, Y. Zou, Adv. Mater. 2008, 20, 2952–2958.
3 Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu,
Adv. Mater. 2010, 22, E135–E138.
31 L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew.
Chem. Int. Ed. 2011, 50, 9697–9702.
4 S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007,
107, 1324–1338.
32 M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, J.
Am. Chem. Soc. 2011, 133, 9638–9641.
5 Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, J.
Am. Chem. Soc. 2009, 131, 7792–7799.
33 H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You,
Angew. Chem. Int. Ed. 2011, 50, 2995–2998.
6 T. Umeyama, H. Imahori, J. Mater. Chem. A 2014, 2, 11545–
11560.
34 F. Huang, K. S. Chen, H. L. Yip, S. K. Hau, O. Acton, Y.
Zhang, J. D. Luo, A. K.-Y. Jen, J. Am. Chem. Soc. 2009, 131,
13886–13887.
7 J. Li, Y. Zhao, H.S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M.
Lin, S. H. Lim, Y. Zhou, H. Su, B. S. Ong, Sci. Rep. 2012, 2, 754.
35 Z. Gu, P. Tang, B. Zhao, H. Luo, X. Guo, H. Chen, G. Yu, X.
Liu, P. Shen, S. Tan, Macromolecules 2012, 45, 2359–2366.
8 H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, Y.
Liu, Adv. Mater. 2012, 24, 4618–4622.
36 X. Guo, M. J. Zhang, J. H. Tan, S. Q. Zhang, L. J. Huo, W. P.
Hu, Y. F. Li, J. H. Hou, Adv. Mater. 2012, 24, 6536–6541.
9 Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photon.
2012, 6, 591–595.
37 L. Huo, J. Hou, H.-Y. Chen, S. Zhang, Y. Jiang, T. L. Chen, Y.
Yang, Macromolecules 2009, 42, 6564–6571.
10 F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.
€
€
€
11 E. Bundgaard, O. Hagemann, M. Manceau, M. Jørgensen,
F.C. Krebs, Macromolecules 2010, 43, 8115–8120.
38 H. Burckstummer, A. Weissenstein, W. Bialas, F. Wurthner,
J. Org. Chem. 2011, 76, 2426–2432.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 00, 000–000
11