1
3
1
.64–1.37 (m, 8H), 1.36–1.05 (pseudo-s, 24H); C NMR (CDCl
3
)
4 (a) F. Otis, N. Voyer, A. Polidori and B. Pucci, New J. Chem., 2006, 30,
1
85; (b) G. G. Kochendoerfer, D. Clayton and C. Becker, Protein Pept.
d 172.1, 131.3, 131.3, 130.3, 128.9, 127.4, 125.5, 125.1, 124.7, 77.2,
1.9, 71.8, 70.6, 70.4, 70.0, 53.8, 53.4, 51.7, 29.6, 29.5, 29.4, 27.4,
7.3. HRMS (MALDI-TOF): m/z calculated for C106
M + H] 1857.1252, Found: 1857.1288, calculated [M + Na]
Lett., 2005, 12, 737; (c) E. Biron, F. Otis, J.-C. Meillon, M. Robitaille, J.
Lamothe, P. Van Hove, M.-E. Cormier and N. Voyer, Bioorg. Med.
Chem., 2004, 12, 1279; (d) G. W. Gokel, P. H. Schlesinger, N. K.
Djedovic, R. Ferdani, E. C. Harder, J. Hu, W. M. Leevy, J. Pajewska,
R. Pajewski and M. E. Weber, Bioorg. Med. Chem., 2004, 12, 1291;
7
2
[
H
158FeN
8
O
16
+
+
1879.1071, found 1879.1356.
(
9
e) J.-C. Meillon and N. Voyer, Angew. Chem., Int. Ed. Engl., 1997, 36,
67.
5
6
(a) D. T. Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri, Angew.
Chem., Int. Ed., 2001, 40, 988; (b) M. Amorin, L. Castedo and
J. R. Granja, Chem. Eur. J., 2008, 14, 2100; (c) S. Fernandez-Lopez,
H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K.
Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen and M. R.
Ghadiri, Nature, 2001, 412, 452.
Conclusions
Spectroscopic and cyclic voltammetry studies suggest that the
synthetic, redox-active ion channel 9 coordinates cations to afford
a ‘billiard ball’ mechanism of ion transport analogous to that
found with natural protein channels. This study has also shown
that 9 conducts Na ions through lipid bilayers at a rate that
is approximately five times faster than the ionophore, monensin.
N. Sakai and S. Matile, Angew. Chem., Int. Ed., 2008, 47, 9603.
7 Y. J. Jeon, H. Kim, S. Jon, N. Selvapalam, D. H. Oh, I. Seo, C. S. Park,
+
S. R. Jung, D. S. Koh and K. Kim, J. Am. Chem. Soc., 2004, 126, 15944.
M. E. Weber, W. Wang, S. E. Steinhardt, M. R. Gokel, W. M. Leevy
and G. W. Gokel, New J. Chem., 2006, 30, 177.
8
Although the data were inconsistent, 9 also demonstrated some
9 W. Wang, C. R. Yamnitz and G. W. Gokel, Heterocycles, 2007, 73, 825.
10 J. Carlos Iglesias-Sanchez, W. Wang, R. Ferdani, P. Prados, J. de
Mendoza and G. W. Gokel, New J. Chem., 2008, 32, 878.
1 G. W. Gokel and M. M. Daschbach, Coord. Chem. Rev., 2008, 252, 886.
2 W. Wang, R. Li and G. W. Gokel, Chem. Commun., 2009, 911.
13 C. L. Murray, H. Shabany and G. W. Gokel, Chem. Commun., 2000,
+
+
selectivity for supporting a Na flux over a K flux, possibly
dependent on the appropriate orientation of the channel in the
membrane. Oxidation of the ferrocene unit within the channel
inhibits the ion transport, demonstrating the potential role of a
redox-active center as a switch in regulating transmembrane cation
flux.
1
1
2
371.
1
4 (a) D. A. Dougherty and H. Lester, Angew. Chem., Int. Ed., 1998, 37,
2
1
329; (b) P. J. Cragg, M. C. Allen and J. W. Steed, Chem. Commun.,
999, 553 .
1
1
1
5 P. Schmitt, P. D. Beer, M. G. B. Drew and P. Sheen, Angew. Chem., Int.
Acknowledgements
Ed. Engl., 1997, 35, 1840.
6 H. Shabany, C. L. Murray, C. A. Gloeckner, M. A. Grayson, M. L.
Gross and G. W. Gokel, Chem. Commun., 2000, 2375.
We would like to acknowledge: Dr Charles Amass, Chemistry De-
partment, Smith College for helpful advice on the sodium NMR
spectroscopy, the National Science Foundation (NSF grant#
CHE-0513445), and Merck/AAAs Undergraduate Science Re-
search program for supporting the work of all the undergraduates
coauthors (Nylander, Wardlaw, Gibson, Valentine, Onyewadume,
Ahove, Woodbury and Mongare) and undergraduates: Angela
Saquibal, Mary Banks, Anu Maharjan, Monica Wang and Jill
Flynn.
7 A. C. Hall, C. Suarez, A. Hom-Choudhury, A. N. A. Manu, C. Dennis
Hall, G. J. Kirkovits and I. Ghiriviga, Org. Biomol. Chem., 2003, 1,
2
973.
18 M. M. Pike, S. R. Simon, J. A. Balshi and C. S. Springer, Proc. Natl.
Acad. Sci. U. S. A., 1982, 79, 810.
1
9 (a) F. G. Riddell and M. K. Hayer, Biochim. Biophys. Acta, 1985, 817,
13; (b) F. G. Riddell and S. J. Tompsett, Biochim. Biophys. Acta, 1990,
3
1024, 193; (c) D. Duval, F. G. Riddell, S. Rebuffat, N. Platzer and B.
Bodo, Biochim. Biophys. Acta, 1998, 1372, 370.
2
2
0 G. R. A. Hunt and J. A. Veiro, Biochem. Soc. Trans., 1986, 14, 602.
1 K. Ashwani, S. Mogeswaran and O. Sutherland, Tetrahedron, 1986, 42,
3
291.
2
2 (a) A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem. Commun.,
Notes and references
1986, 1709; (b) K. Kubo, R. Ishige and T. Sakurai, Talanta, 1999, 49,
3
39.
1
2
3
D. J. Aidley and P. R. Stanfield, Ion channels : molecules in action,
University Press, Cambridge, 1996.
23 C. Hamamci, H. Ho s¸ g o¨ ren and S. Erdo g˘ an, Talanta, 1998, 47, 229.
24 E. K. Elliott, M. M. Daschbach and G. W. Gokel, Chem. Eur. J., 2008,
14(19), 5871.
25 A. J. Williams, in Microelectrode Techniques–The Plymouth Workshop
Handbook, ed. D. Ogden, The Company of Biologists Ltd., Cambridge,
2nd edn, 1994, pp. 79–101.
W. D. Stein, Channels, Carriers and Pumps, Academic Press, New York,
1
990.
(a) T. M. Fyles, Chem. Soc. Rev., 2007, 36, 335; (b) G. W. Gokel and
I. A. Carasel, Chem. Soc. Rev., 2007, 36, 378; (c) U. Koert and P. Reiss,
Supramol. Chem., 2002, 2, 29; (d) G. W. Gokel and A. Mukhopadhyay,
Chem. Soc. Rev., 2001, 30, 274.
26 V. G. Albano, L. Busetto, F. Marchetti, M. Monari, S. Zacchini and V.
Zanotti, J. Organomet. Chem., 2005, 690, 4666.
3
870 | Org. Biomol. Chem., 2009, 7, 3862–3870
This journal is © The Royal Society of Chemistry 2009