Organic Letters
Letter
(8) (a) Tao, Z.; Robb, K. A.; Panger, J. L.; Denmark, S. E.
Enantioselective, Lewis Base-Catalyzed Carbosulfenylation of
Alkenylboronates by 1,2-Boronate Migration. J. Am. Chem. Soc.
2018, 140 (46), 15621−15625. (b) Matviitsuk, A.; Denmark, S. E.
Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade
Sulfenoacetalization of Alkenyl Aldehydes. Angew. Chem., Int. Ed.
2019, 58, 12486−12490. (c) Tao, Z.; Robb, K. A.; Zhao, K.;
Denmark, S. E. Enantioselective, Lewis Base-Catalyzed Sulfenocyc-
lization of Polyenes. J. Am. Chem. Soc. 2018, 140 (10), 3569−3573.
(d) Denmark, S. E.; Kornfilt, D. J. P. Catalytic, Enantioselective,
Intramolecular Sulfenofunctionalization of Alkenes with Phenols. J.
Org. Chem. 2017, 82 (6), 3192−3222. (e) Denmark, S. E.; Rossi, S.;
Webster, M. P.; Wang, H. Catalytic, Enantioselective Sulfenylation
of Ketone-Derived Enoxysilanes. J. Am. Chem. Soc. 2014, 136 (37),
13016−13028. (f) Denmark, S. E.; Jaunet, A. Catalytic, Enantiose-
lective, Intramolecular Carbosulfenylation of Olefins. Preparative and
Stereochemical Aspects. J. Org. Chem. 2014, 79 (1), 140−171.
(g) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H.
Mechanistic, Crystallographic, and Computational Studies on the
Catalytic, Enantioselective Sulfenofunctionalization of Alkenes. Nat.
Chem. 2014, 6, 1056−1064. (h) Hartmann, E.; Denmark, S. E.
Structural, Mechanistic, Spectroscopic, and Preparative Studies on
the Lewis Base Catalyzed, Enantioselective Sulfenofunctionalization
of Alkenes. Helv. Chim. Acta 2017, 100, No. e1700158. (i) Denmark,
S. E.; Kornfilt, D. J. P.; Vogler, T. Catalytic Asymmetric
Thiofunctionalization of Unactivated Alkenes. J. Am. Chem. Soc.
2011, 133 (39), 15308−15311. (j) Denmark, S. E.; Jaunet, A.
Catalytic, Enantioselective, Intramolecular Carbosulfenylation of
Olefins. J. Am. Chem. Soc. 2013, 135 (17), 6419−6422.
(15) Caruano, J.; Muccioli, G. G.; Robiette, R. Biologically active
γ-lactams: Synthesis and Natural Sources. Org. Biomol. Chem. 2016,
14, 10134−10156.
(16) (a) Dong, S.; Frings, M.; Zhang, D.; Guo, Q.; Daniliuc, C. G.;
Cheng, H.; Bolm, C. Organocatalytic Asymmetric Synthesis of trans-
γ-Lactams. Chem. - Eur. J. 2017, 23, 13888−13892. (b) Rommel,
M.; Fukuzumi, T.; Bode, J. W. Cyclic Ketimines as Superior
Electrophiles for NHC-Catalyzed Homoenolate Additions with
Broad Scope and Low Catalyst Loadings. J. Am. Chem. Soc. 2008,
130 (51), 17266−17267. (c) Raup, D. E. A.; Cardinal-David, B.;
Holte, D.; Scheidt, K. A. Cooperative Catalysis by Carbenes and
Lewis Acids in a Highly Stereoselective Route to γ-Lactams. Nat.
Chem. 2010, 2, 766−771. (d) Zhao, X.; DiRocco, D. A.; Rovis, T.
N-Heterocyclic Carbene and Brønsted Acid Cooperative Catalysis:
Asymmetric synthesis of trans-γ-Lactams. J. Am. Chem. Soc. 2011,
133 (32), 12466−12469.
(17) Ye, L. W.; Shu, C.; Gagosz, F. Recent Progress Towards
Transition Metal-Catalyzed Synthesis of γ-Lactams. Org. Biomol.
Chem. 2014, 12, 1833−1845.
(18) BINOL derived catalysts had been prepared previously in the
context of selenofunctionalization and were inferior. Postdoctoral
report from Thomas Vogler; University of Illinois at Urbana-
Champaign, 2009.
(19) Determined by CSP-HPLC comparison with its enantiomer.
(20) Izumi, Y.; Tai, A. Stereo-Differentiating Reactions; Academic
Press, New York, 1977.
(9) For examples of other enantioselective thiofunctionalizations,
see: Lucchini, V.; Modena, G.; Pasquato, L. Enantiopure
Thiosulfonium Salts in Asymmetric Synthesis. Face Selectivity in
Electrophile Additions to Unfunctionalised Olefins. J. Chem. Soc.,
Chem. Commun. 1994, 1565−1566. (b) Liang, Y.; Zhao, X.
Enantioselective Construction of Chiral Sulfides via Catalytic
Electrophilic Azidothiolation and Oxythiolation of N-Allyl Sulfona-
mides. ACS Catal. 2019, 9, 6896−6902. (c) Xu, J.; Zhang, Y.; Qin;
Zhao, X. Catalytic, Regio-, and Enantioselective Oxytrifluorome-
thylthiolation of Aliphatic Internal Alkenes by Neighboring Group
Assistance. Org. Lett. 2018, 20, 6384−6388. (d) Luo, H.-Y.; Dong,
J.-W.; Xie, Y.-Y.; Song, X.-F.; Zhu, D.; Ding, T.; Liu, Y.; Chen, Z.-M.
Lewis Base/Brønsted Acid Co-Catalyzed Asymmetric Thiolation of
Alkenes with Acid-Controlled Divergent Regioselectivity. Chem. -
Eur. J. 2019, 25, 15411−15418. For an example of racemic
thiofunctionalization of γ-lactams, see: Danilyuk, I. Y.; Vas’kevich, R.
I.; Vas’kevich, A. I.; Vovk, M. V. Electrophilic Intramolecular
Cyclization of Functional Derivative of Unsaturated Compounds:
VIII. Cyclization of 4-Aryl-N-(thiophen-3-yl)but-3-enamides by the
Action of Polyphosphoric Acid and Chlorosulfanylarenes. Russ. J.
Org. Chem. 2016, 52, 987−992.
(10) Roth, A.; Denmark, S. E. Enantioselective, Lewis Base-
Catalyzed, Intermolecular Sulfenoamination of Alkenes. J. Am. Chem.
Soc. 2019, 141 (35), 13767−13771.
(11) Filler, R.; Schure, R. M. Highly Acidic Perhalogenated
Alcohols. A New Synthesis of Perfluoro-t-butyl Alcohol. J. Org.
Chem. 1967, 32 (4), 1217−1219.
(12) Bordwell, F. G.; Fried, H. E.; Hughes, D. L.; Lynch, T. Y.;
Satish, A. V.; Whang, Y. E. Acidities of Carboxamides, Hydroxamic
Acids, Carbohydrazides, Benzenesulfonamies, and Benzenesulfono-
hydrazides in DMSO Solution. J. Org. Chem. 1990, 55 (10), 3330−
3336.
(13) Serjeant, E. P., Dempsey, B. Ionisation Constants of Organic
Acids in Aqueous Solution. International Union of Pure and Applied
Chemistry (IUPAC); Pergamon Press: New York, 1979.
́
(14) Saldívar-Gonzalez, F. I.; Lenci, E.; Trabocchi, A.; Medina-
Franco, J. L. Exploring the Chemical Space and the Bioactivity
Profile of Lactams: a Chemoinformatic Study. RSC Adv. 2019, 9,
27105−27116.
E
Org. Lett. XXXX, XXX, XXX−XXX