10.1002/adsc.202000786
Advanced Synthesis & Catalysis
of the fluoroalkyl radical on the double bond affords
radical intermediate B. Subsequently, the reaction of
intermediate B with Pd(I)X species forms the Pd(II)
intermediate C, which undergoes transmetalation with
B2pin2 to deliver complex D. Finally, the reductive
elimination of intermediate D generates the desired
product 3a. This process also regenerates Pd(0),
which enters into the next catalytic circle.
In summary, we have demonstrated a palladium-
catalyzed reaction for the construction of 4-boronate
ester substituted difluoro-γ-lactams. This strategy is
easy to operate, and it provides a simple route to
produce 4-boronated difluoro-γ-lactams that are
difficult to access otherwise. The broad substrate
scope, short reaction time and potential product
derivatization make the boryldifluoroalkylation
reactions very attractive. Preliminary mechanistic
studies revealed that this reaction may involve an
intramolecular difluoroalkyl radical cyclization
process. Given that the unique merit of organoboron
species, we believe this method has potential
application on synthetic chemistry.
5460-5463; f) W. Zhao, J. Montgomery, J. Am. Chem.
Soc. 2016, 138, 9763-9766; g) S. R. Sardini, M. K.
Brown, J. Am. Chem. Soc. 2017, 139, 9823-9826; h) K.
B. Smith, M. K. Brown, J. Am. Chem. Soc. 2017, 139,
7721-7724; i) Z. Liu, H.-Q. Ni, T. Zeng, K. M. Engle, J.
Am. Chem. Soc. 2018, 140, 3223-3227; j) W. Wang, C.
Ding, Y. Li, Z. Li, Y. Li, L. Peng, G. Yin, Angew.
Chem. Int. Ed. 2019, 58, 4612-4616; Angew. Chem.
2019, 131, 4660-4664.
[3] Cathleen M. Crudden, D. Edwards, Eur. J. Org. Chem.
2003, 2003, 4695-4712; b) K. Semba, Y. Nakao, J. Am.
Chem. Soc. 2014, 136, 7567-7570; c) K. Semba, Y.
Nakao, J. Am. Chem. Soc. 2014, 136, 7567-7570; d) H.
M. Nelson, B. D. Williams, J. Miró, F. D. Toste, J. Am.
Chem. Soc. 2015, 137, 3213-3216; e) W. Su, T.-J. Gong,
X. Lu, M.-Y. Xu, C.-G. Yu, Z.-Y. Xu, H.-Z. Yu, B.
Xiao, Y. Fu, Angew. Chem. Int. Ed. 2015, 54, 12957-
12961; Angew. Chem. 2015, 127, 13149-13153; f) D.
Hemming, R. Fritzemeier, S. A. Westcott, W. L. Santos,
P. G. Steel, Chem. Soc. Rev. 2018, 47, 7477-7494; g) J.
Huo, Y. Xue, J. Wang, Chem. Commun. 2018, 54,
12266-12269.
[4] N.-Y. Wu, X.-H. Xu, F.-L. Qing, ACS Catal. 2019, 9,
Experimental Section
5726-5731.
General procedure for the synthesis of 3,3-difluoro-1- [5] Y. Cheng, C. Mück-Lichtenfeld, A. Studer, J. Am.
phenyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-
methyl)pyrrolidin-2-one. To an oven-dried tube was
added 1a (0.1 mmol), B2pin2 (0.2 mmol), Cs2CO3 (2.0
equiv), and Pd(PPh3)4 (10 mol%). The tube was evacuated
and backfilled with argon (repeated three times). CH3CN
(1.0 mL) was added via syringe. The reaction mixture was
stirred at 80 oC for 1 h under Ar atmosphere. After cooling
to room temperature, the solvent was evaporated under
vacuum. The residue was purified by flash chromatography
on silica gel to afford the corresponding product.
Chem. Soc. 2018, 140, 6221-6225.
[6] a) S. Wang, J. Zhang, L. Kong, Z. Tan, Y. Bai, G. Zhu,
Org. Lett. 2018, 20, 5631-5635; b) W.-H. Guo, H.-Y.
Zhao, Z.-J. Luo, S. Zhang, X. Zhang, ACS Catal. 2019,
9, 38-43.
[7] a) G. M. Blackburn, D. E. Kent, F. Kolkmann, J. Chem.
Soc. Perkin Trans. 1 1984, 1119-1125; b) B. E. Smart, J.
Fluorine Chem. 2001, 109, 3-11; c) M. Hird, Chem. Soc.
Rev. 2007, 36, 2070-2095; d) D. O'Hagan, Chem. Soc.
Rev. 2008, 37, 308-319; e) J. Hu, W. Zhang, F. Wang,
Chem. Commun. 2009, 7465-7478; f) N. A. Meanwell,
J. Med. Chem. 2011, 54, 2529-2591.
Acknowledgements
[8] a) K. Fujikawa, Y. Fujioka, A. Kobayashi, H. Amii,
Org. Lett. 2011, 13, 5560-5563; b) Z. Feng, Q.-Q. Min,
Y.-L. Xiao, B. Zhang, X. Zhang, Angew. Chem. Int. Ed.
2014, 53, 1669-1673; Angew. Chem. 2014, 126, 1695-
1699; c) S. Ge, W. Chaładaj, J. F. Hartwig, J. Am.
Chem. Soc. 2014, 136, 4149-4152; d) Q.-Q. Min, Z. Yin,
Z. Feng, W.-H. Guo, X. Zhang, J. Am. Chem. Soc. 2014,
136, 1230-1233; e) Y.-L. Xiao, W.-H. Guo, G.-Z. He, Q.
Pan, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 9909-
9913; Angew. Chem. 2014, 126, 10067-10071; f) J.-W.
Gu, Q.-Q. Min, L.-C. Yu, X. Zhang, Angew. Chem. Int.
Ed. 2016, 55, 12270-12274; Angew. Chem. 2016, 128,
12458-12462; g) Z. Liu, H.-Q. Ni, T. Zeng, K. M.
Engle, J. Am. Chem. Soc. 2018, 140, 3223-3227; h) Y.-
L. Xiao, Q.-Q. Min, C. Xu, R.-W. Wang, X. Zhang,
Angew. Chem. Int. Ed. 2016, 55, 5837-5841; Angew.
Chem. 2016, 128, 5931-5935; i) Z. Feng, F. Chen, X.
Zhang, Org. Lett. 2012, 14, 1938-1941; j) Z. Feng, Y.-L.
Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264-2278;
k) X.-P. Fu, X.-S. Xue, X.-Y. Zhang, Y.-L. Xiao, S.
Zhang, Y.-L. Guo, X. Leng, K. N. Houk, X. Zhang, Nat.
Chem. 2019, 11, 948-956.
Financial support from the National Natural Science Foundation
of China (21871115) is gratefully acknowledged.
References
[1] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-
2483; b) S. V. Ley, A. W. Thomas, Angew. Chem. Int.
Ed. 2003, 42, 5400-5449; Angew. Chem. 2003, 115,
5558-5607; c) N. R. Candeias, F. Montalbano, P. M. S.
D. Cal, P. M. P. Gois, Chem. Rev. 2010, 110, 6169-
6193; d) R. Jana, T. P. Pathak, M. S. Sigman, Chem.
Rev. 2011, 111, 1417-1492; e) S. N. Mlynarski, A. S.
Karns, J. P. Morken, J. Am. Chem. Soc. 2012, 134,
16449-16451.
[2] a) Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131,
3160-3161; b) N. Matsuda, K. Hirano, T. Satoh, M.
Miura, J. Am. Chem. Soc. 2013, 135, 4934-4937; c) T.
Jia, P. Cao, B. Wang, Y. Lou, X. Yin, M. Wang, J. Liao,
J. Am. Chem. Soc. 2015, 137, 13760-13763; d) K.
Semba, Y. Ohtagaki, Y. Nakao, Org. Lett. 2016, 18,
3956-3959; e) K. Yang, Q. Song, Org. Lett. 2016, 18,
4
This article is protected by copyright. All rights reserved.