S. Muthusamy et al. / Tetrahedron Letters 42 (2001) 5113–5116
Table 3. Fused 3-furanones ring systems 7 produced via Scheme 3
5115
Substrate
R
n
Time (h)
Yieldc of 7%
Yieldc of 8%
6a
6b
6c
6d
Me
1
1
2
2
1
1
0.5
0.5
39
34
87
74
38
35
–
CH2CHꢀCH2
Me
CH2CHꢀCH2
–
c Yields (unoptimized) refer to isolated and chromatographically pure compounds 7 and 8.
gation on diazo compounds 6a–d (Scheme 3). Treat-
ment of diazo ketones 6a,b with Amberlyst-15 resulted
in the respective novel fused 3-furanone skeleton 7a,b
and a-hydroxy ketones 8a,b. However, in the reaction
of an a-diazo ketone tethered to a cyclohexanone ring
6c,d the corresponding fused 3-furanones 7c,d15 were
formed (Table 3). The reason may be the formation of
a favorable 6,5-fused ring system 7c,d rather than the
strained 5,5-fused ring system 7a,b under the experi-
mental conditions. It is worth noting that the fused
3-furanone skeleton is present in many natural products
such as avermectin B.19 It may also be noted that the
olefin moiety present in the diazo compounds 6b,d
stayed intact under the reaction conditions.
Branca, S. J.; Dieter, R. K. J. Am. Chem. Soc. 1981, 103,
1996–2008; (c) Erman, W. F.; Stone, L. C. J. Am. Chem.
Soc. 1971, 93, 2821–2823.
3. Sengupta, S.; Mondal, S. Tetrahedron Lett. 1999, 40,
8685–8688.
4. (a) Hecker, S. J.; Werner, K. M. J. Org. Chem. 1993, 58,
1762–1765; (b) Padwa, A.; Hornbuckle, S. F.; Zhang, Z.;
Zhi, L. J. Org. Chem. 1990, 55, 5297–5299.
5. Muthusamy, S.; Babu, S. A.; Gunanathan, C. Synth.
Commun. 2001, in press.
6. Pansare, S. V.; Jain, R. P.; Bhattacharyya, A. Tetra-
hedron Lett. 1999, 40, 5255–5258.
7. Doyle, M. P.; Trudell, M. L. J. Org. Chem. 1984, 49,
1196–1199.
8. Regitz, M.; Mass, G. Diazo Compounds-Properties and
Synthesis; Academic Press: New York, 1986; pp. 90–165.
9. Amberlyst-15 is a macroreticular type sulfonic acid based
polystyrene cation exchange resin and used in this study
in the H+ form. Amberlyst is a trademark of the Rohm
and Hass Co.
10. Coppola, G. M. Synthesis 1984, 1021–1023.
11. Perni, R. B. Synth. Commun. 1989, 19, 2383–2387.
12. Ballini, R.; Marziali, P.; Mozzicafreddo, A. J. Org.
Chem. 1996, 61, 3209–3211.
In summary, the reaction of various a-diazo carbonyl
compounds with a solid ionic matrix, Amberlyst-15
under mild heterogeneous conditions furnished a-
hydroxy ketones, novel fused 3-furanones and bicy-
cloalkane-1,3-diones. The mild reaction conditions
together with the heterogeneous manner makes the use
of Amberlyst-15 an important alternative to classic
acidic catalysis and other methods, since both by-prod-
ucts and aqueous work-up are avoided.
13. (a) Patwardhan, S. A.; Dev, S. Synthesis 1974, 11, 348–
349; (b) Gupta, S. K. J. Org. Chem. 1976, 41, 2642–2646;
(c) Dann, A. E.; Davis, J. B.; Nagler, J. J. Chem. Soc.,
Perkin Trans. 1 1979, 158–160.
Acknowledgements
14. Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S. Synthesis
1979, 618–620.
This research was supported by the CSIR, Young
Scientist Scheme and partly by the Department of
Science and Technology, New Delhi. We thank Dr. P.
K. Ghosh, Director, for his encouragement of this
work. We are grateful to Professor G. Mehta, Director,
Indian Institute of Science, Bangalore, for a generous
gift of Amberlyst-15 for this study. S.A.B. and C.G.
thank CSIR, New Delhi, for a Fellowship.
15. All new compounds gave satisfactory spectral data con-
sistent with their structures. Selected spectral data, (2b):
colorless solid mp 103–105°C; IR (KBr) 3391, 2927, 2845,
1678, 1603, 1576, 1512, 1422, 1250, 1181, 1103, 1029, 977,
821 cm−1 1H NMR (200 MHz, CDCl3/CD3CN) l 7.89
;
(d, 2H, J=8.9 Hz, Arom.-H), 6.99 (d, 2H, J=8.9 Hz,
Arom.-H), 4.78 (s, 2H, OCH2), 3.86 (s, 3H, OCH3), 3.49
(br s, 1H, OH); 13C NMR (50 MHz, CDCl3/CD3CN) l
54.9 (OCH3), 64.6 (OCH2), 113.6 (ꢀCH), 126.3 (quat.-C),
129.5 (ꢀCH), 163.8 (quat.-C), 197.0 (CꢀO). Anal. calcd
for C9H10O3: C, 65.05; H, 6.07. Found: C, 65.13; H, 6.12.
(4b): colorless thick liquid; IR (neat) 3445, 2960, 2877,
References
1. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Com-
pounds. From Cyclopropanes to Ylides; Wiley-Inter-
science: New York, 1998; (b) Padwa, A.; Weingarten, M.
D. Chem. Rev. 1996, 96, 223–269; (c) Ye, T.; McKervey,
M. A. Chem. Rev. 1994, 94, 1091–1160; (d) Padwa, A.;
Hornbuckle, S. A. Chem. Rev. 1991, 91, 263–309; (e)
Calter, M. A. Curr. Org. Chem. 1997, 1, 37–70; (f)
Padwa, A. Topp. Curr. Chem. 1997, 189, 121–158.
1
1731, 1452, 1406, 1274, 1158, 1069, 732 cm−1; H NMR
(200 MHz, CDCl3) l 4.19 (s, 2H, OCH2), 3.32 (br s, 1H,
OH), 2.50 (t, 2H, J=7.0 Hz), 1.40–2.21 (m, 9H); 13C
NMR (50 MHz, CDCl3) l 21.1 (CH2), 23.9 (CH2), 30.1
(CH2), 36.4 (CH2), 38.5 (CH2), 48.4 (CH), 68.6 (OCH2),
210.0 (CꢀO), 221.2 (CꢀO). Anal. calcd for C9H14O3: C,
63.51; H, 8.29. Found: C, 63.59; H, 8.37. (7c): colorless
solid mp 120–122°C; IR (KBr) 3380, 2944, 2911, 1760,
1
1457, 1413, 1232, 1097, 1076, 1020, 938 cm−1; H NMR
2. (a) Srikrishna, A.; Ramachary, D. B. Tetrahedron Lett.
1999, 40, 1605–1606; (b) Smith, III, A. B.; Toder, B. H.;
(200 MHz, CDCl3) l 4.16 (dd, 2H, J1=13.5 Hz, J2=1.6