4
Tetrahedron Letters
Table 1. Photochemical, electrochemical parameters, and photovoltaic devices manufactured using E1 and E2 electrolytes.
b
c
d
dye
λabsanm
(ε/ M-1 cm-1)
400 (65400)
419 (70900)
377 (41700)
---
λ
abs nm
Eox
E0-0
Ered
(V)
Jsc (mA·cm-2)
E1/E2e
Voc (V)
E1/E2
FF
E1/E2
ηf (%)
E1/E2
τ g (ms)
E1/E2
(film)
386
414
---
(V)
0.60
0.55
0.81
1.10i
(V)
2.72
2.53
2.83
2.60 i
CPG2a
CPG2b
CP3h
-2.12
-1.98
-2.02
-1.50 i
8.65/ 8.02
9.28/ 8.80
7.88/ ---
0.69/ 0.72
0.70/ 0.74
0.69/ ---
0.74/ 0.75
0.66/ 0.69
0.65/ 0.65
0.70/ ---
0.62/ 0.60
3.95/ 3.97
4.20/ 4.24
3.83/ ---
7.26/ 7.90
17.30/22.28
19.94/26.04
17.9/---
---
N719
---
15.62/ 17.47
ε: absorption coefficient; Eox: oxidation potential; E0-0: 0-0 transition energy.
a Absorptions were measured in THF. b Oxidation potentials of dyes (10-3 M) in THF containing 0.1 M (n-C4H9)4NPF6 with a scan rate of 50 mV·s-1 (vs. Fc+/ Fc).
c E0-0 was determined from the onset of the absorption in THF. d Ered was calculated by Eox − E0-0 e Electrolyte 1 (E1): LiI (0.5 M), I2 (0.05 M), and TBP (0.5 M)
.
in MeCN. Electrolyte 2 (E2): 3-dimethylimidazolium iodide (1.0 M), LiI (0.05 M), I2 (0.03 M), guanidinium thiocyanate (0.1 M), and TBP (0.5 M) in
MeCN:valeronitrile (85:15, v/v). f Performance of DSSCs was measured in a 0.25 cm2 working area on an FTO (8Ω/square) substrate under AM 1.5 conditions.
g Values in the blanks were obtained by fitting the middle-frequency in the Bode phase plots through the expression τ = 1/(2πf), where f is the frequency. h see ref.
5. i see ref. 13.
Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M.
Science 2011, 334, 629–633.
In summary, we successfully synthesized two novel DSSCs
materials containing a [2.2]paracyclophane as the bridge moiety
3. a) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska,
of CPG2a and CPG2b. Compared with our previous work, we
P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008,
5194–5196; b) Tian, H.; Yang, X.; Cong, J.; Chen, R.; Liu, J.;
extended π-chromophore and enhanced light harvesting, thus
substantially improving the Jsc by extending the absorption
wavelength. The nonconjugated moiety and long alkoxy chains
may have an advantage in reducing the rate of charge
recombination and may lead to a high Voc value. Furthermore,
replacing the electrolyte system from E1 to E2 can help prevent
short circuits and increase the value of Voc. The effect is
supported by the higher resistance in the EIS of CPG2b.
Hao, Y.; Hagfeldt, A.; Sun, L. Chem. Commun. 2009, 6288–6290;
c) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian,
H.; Grätzel, M.; Zhu, W. Energy Environ. Sci., 2012, 5, 8261–
8272; d) Lin, R. Y.-Y.; Lin, H.-W.; Yen, Y.-S.; Chang, C-H.;
Chou, H.-H.; Chen, P.-W.; Hsu, C.-Y.; Chen, Y.-C.; Lin, J. T.; Ho,
K.-C. Energy Environ. Sci., 2013, 6, 2477–2486; e) Cai, S.; Hu, X.;
Zhang, Z.; Su, J.; Li, X.; Islam, A.; Han, L.; Tian, H. J. Mater.
Chem. A, 2013, 1, 4763–4772; f) Chang, Y. J.; Chou, P.-T.; Lin,
Y.-Z.; Watanabe, M.; Yang, C.-J.; Chin, T.-M.; Chow, T. J. J.
Mater. Chem., 2012, 22, 21704–21712.
4. a) Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed., 2006, 45,
6430-6437; b) Morisaki, Y.; Chujo, Y. Bull. Chem. Soc. Jpn.,
2009, 82, 1070-1082; c) Salhi, F.; Lee, B.; Metz, C.; Bottomley,
L. A.; Collard, D. M. Org. Lett., 2002, 4, 3195-3198.
Acknowledgments
This work was supported by the National Science Council
(NSC 101-2113-M-035-001-MY2) and Academia Sinica in
Taiwan. The molecule weight is grateful for a Postdoctoral
Fellowship in Academia Sinica, Taiwan. The computations were
performed using the computer facilities at the Academia Sinica
Computing Center, Academia Sinica.
5. Chang, Y. J.; Watanabe, M.; Chou, P.-T.; Chow, T. J. Chem.
Commun. 2012, 48, 726–728.
6. Escossure, A. d. l.; Martínez-Díaz, V.; Thordarson, P.; Rowan, A.
E.; Nolte, R. J. M.; Torres, T. J. Am. Chem. Soc. 2003, 125,
12300-12308.
7. Bazan, G. C.; Oldham, Jr., W. J.; Lachicotte, R. J.; Tretiak, S.;
Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188-
9204.
8. Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach,
U.; Spiccia, L. Nature Chemistry 2011, 3, 211-215.
Supplementary Material
9. a) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49-68; b) Hara,
K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, Suga, S.;
Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003,
107, 597–606.
1
The H and 13C NMR spectra of all compounds, absorption
spectra in THF solution, absorption spectra on TiO2 film,
TDDFT-calculated molecule orbitals, low-energy transitions, CV
spectra, HOMO/LUMO levels, J-V curve, and IPCE and EIS
spectra were used. Supplementary data associated with this
article can be found in the online version, at doi:xxx.
10. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res., 2008, 41, 157-167.
11. a) Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga,
S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205-4210; b)
Tian, H.; Yang, X.; Cong, J.; Chen, R.; Teng, C.; Liu, J.; Hao, Y.;
Wang, L.; Sun, L. Dyes and Pigments 2010, 84, 62-68.
12. a) Kroeze, J. E.; Hirata, N.; Koops, S.; Nazeeruddin, M. K.;
Schmidt-Mende, L.; Grätzel, M.; Durrant, J. R. J. Am. Chem. Soc.
2006, 128, 16376–16383; b) Ning, Z.; Zhang, Q.; Pei, H.; Luan, J.;
Cui, Y.; Tian, H. J. Phys. Chem. C 2009, 113, 10307–10313.
13. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.;
Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am.
Chem. Soc. 2005, 127, 16835–16847.
References and notes
1. O’Regan, B; Grätzel, M. Nature 1991, 353, 737–740.
2. a) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.;
Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J.
Am. Chem. Soc. 2008, 130, 10720–10728; b) Yella, A.; Lee, H.-
W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.;