Edge Article
Chemical Science
halogen substituents on these TPA compounds inuences the
radical generation, stability, and concentrations may be
invaluable in revealing the factors that govern the photophysics
of these compounds.
2 J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and
B. Z. Tang, Chem. Rev., 2015, 115, 11718; Z. He, C. Ke and
B. Z. Tang, ACS Omega, 2018, 3, 3267.
3 F. W u¨ rthner, C. R. Saha-M ¨o ller, B. Fimmel, S. Ogi,
P. Leowanawat and D. Schmidt, Chem. Rev., 2016, 116, 962;
S. Casalini, C. A. Bortolotti, F. Leonardi and F. Biscarini,
Chem. Soc. Rev., 2017, 46, 40.
Conclusions
4
5
M. Liu, L. Zhang and T. Wang, Chem. Rev., 2015, 115, 7304.
A. R. Forrester, J. M. Hay and R. H. Thompson, Organic
Chemistry of Stable Free Radicals, Academic Press, New
York, 1968.
N. L. Bill, O. Trukhina, J. L. Sessler and T. Torres, Chem.
Commun., 2015, 51, 7781; N. Fukui, W. Cha, D. Shimizu,
J. Oh, K. Furukawa, H. Yorimitsu, D. Kim and A. Osuka,
Chem. Sci., 2017, 8, 189.
In summary, a TPA methylene urea-tethered dimer was
synthesized and readily afforded single crystals that organized
the TPA through urea hydrogen bonding interactions. This
solid-state assembly signicantly stabilizes UV-generated radi-
cals. Radicals formed in solution were unstable, as expected for
incomplete para substituted TPA systems. In the solid-state,
high quantities of radicals were formed, up to 1 in ꢀ150
molecules, which were persistent at room temperature with no
observable degradation or signicant changes in the single
crystal X-ray diffraction. Further, radicals generated within the
assembled framework have been shown to last up to a month
with a half-life around a week. Most remarkably, aer radical
decay, radicals can be regenerated to their original maximum
concentration with re-exposure to UV light. The photophysics of
these materials were signicantly quenched likely due to TPA
hole transport properties even with relatively low radical
concentration. Electrochemical evidence demonstrates that
these compounds can be oxidized in solution at 1.0 V vs. SCE to
generate radical cations, whose EPR spectra are similar to the
UV-generated radicals in the solid-state. This suggests that the
TPA radical cation is being formed in the solid-state and this
electron transfer is reversible and reforms the parent
compound over time. We are currently planning to carry out
high-eld EPR experiments as well as Dynamic Nuclear Polari-
zation Magic Angle Spinning solid-state C13-NMR to further
examine this process. Future work includes the synthesis of
additional halogenated on the TPA analogs to elucidate the
factors that govern radical formation, persistence, and quantity.
Understanding how assembly enhances the stability of radicals
would be exceedingly helpful in the end goal of making better
conductive and magnetic materials that incorporate TPA
scaffolds.
6
7
8
H. Murata, D. Miyajima and H. Nishide, Macromolecules,
2006, 39, 6331; T. Michinobu, J. Inui and H. Nishide, Org.
Lett., 2003, 5, 2165.
C. Quinton, V. Alain-Rizzo, C. Dumas-Verdes, F. Miomandre,
G. Clavier and P. Audebert, RSC Adv., 2014, 4, 34332;
C.
F. Miomandre, G. Clavier and P. Audebert, Chem. Eur. J.,
015, 21, 2230.
Quinton,
V.
Alain-Rizzo,
C.
Dumas-Verdes,
2
9
A. Ito, H. Ino, K. Tanaka, K. Kanemoto and T. Kato, J. Org.
Chem., 2002, 67, 491.
10 M. Yano, K. Sato, D. Shiomi, A. Ichimura, K. Abe, T. Takui
and K. Itoh, Tetrahedron Lett., 1996, 37, 9207.
11 S. B. Noh, R. H. Kim, W. J. Kim, S. Kim, K. Lee, N. S. Cho,
H. Shim, H. E. Pudavar and P. N. Prasad, J. Mater. Chem.,
2010, 20, 7422; H. J. Lee, J. Sohn, J. Hwang and S. Y. Park,
Chem. Mater., 2004, 16, 456.
1
1
1
2 J. Hu, X. Zhang, D. Zhang, X. Cao, T. Jiang, X. Zhang and
Y. Tao, Dyes Pigm., 2017, 137, 480.
3 Y. Kuramoto, T. Nakagiri, Y. Matsui, E. Ohta, T. Ogaki and
H. Ideka, Photochem. Photobiol. Sci., 2018, 17, 1157.
4 M. Jiang, X. Gu, J. W. Y. Lam, Y. Zhang, R. T. K. Kwok,
K. S. Wong and B. Z. Tang, Chem. Sci., 2017, 8, 5440;
D. Wang, H. Su, R. T. K. Kwok, X. Hu, H. Zou, Q. Luo,
M. M. S. Lee, X. Xu, J. W. Y. Lam and B. Z. Tang, Chem.
Sci., 2018, 9, 3685.
1
5 L. S. Shimizu, S. R. Salpage and A. A. Korous, Acc. Chem. Res.,
Conflicts of interest
2014, 47, 2116.
1
6 M. F. Geer, M. D. Walla, K. M. Solntsev, C. A. Strassert and
L. S. Shimizu, J. Org. Chem., 2013, 78, 5568; B. A. DeHaven,
D. W. Goodlett, A. J. Sindt, N. Noll, M. De Vetta,
M. D. Smith, C. R. Martin, L. Gonz ´a lez and L. S. Shimizu,
J. Am. Chem. Soc., 2018, 140, 13064.
There are no conicts to declare.
Acknowledgements
This work was supported in part by the National Science
Foundation (CHE-1608874 and OIA-1655740), and a Fulbright
US Scholar award.
1
7 N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern
Molecular Photochemistry of Organic Molecules, Viva Books,
New Delhi, 2017.
18 A. Saha, M. Chen, M. Lederer, A. Kahnt, X. Lu and
D. M. Guldi, Chem. Sci., 2017, 8, 1360.
References
1
9 I. Nyrkova, E. Moulin, J. J. Armao, M. Maaloum, B. Heinrich,
M. Rawiso, F. Niess, J. Cid, N. Jouault, E. Buhler,
A. N. Semenov and N. Giuseppone, ACS Nano, 2014, 8, 10111.
1
E. Mattia and S. Otto, Nat. Nanotecchnol., 2015, 10, 111;
A. S. Mahadevi and G. N. Sastry, Chem. Rev., 2016, 116,
2
2
775; T. Adachi and M. D. Ward, Acc. Chem. Res., 2016, 49, 20 Z. Li, Q. Dong, B. Xu, H. Li, S. Wen, J. Pei, S. Yao, H. Lu, P. Li
669. and W. Tian, Sol. Energy Mater. Sol. Cells, 2011, 95, 2272.
This journal is © The Royal Society of Chemistry 2019
Chem. Sci.