Fig. 6 (left) Closed-shell singlet ground state afforded for strongly
interacting p*–p* dimers; (right) thermally accessible triplet excited
states for weakly bonded p*–p* dimers.
Our EPR studies reveal different microscopic origins for the
observed paramagnetism. A detailed study of these and other
chlorophenyl derivatives will be the subject of a full paper.
Notes and references
Fig. 5 Solid state X-band EPR spectra of (a) 2 and (b) 3 at 220 K.
Inset shows the half-field resonance associated with the formally
spin-forbidden S = 1 term (relative EPR intensities are ꢄ600 for
z Crystal data for 2: C
7 4 2 2
H ClN S , M = 215.69, monoclinic, Pc,
a = 9.5948(19), b = 14.020(3), c = 12.332(3) A, b = 91.24(3)1,
˚
3
˚
V = 1658.6(6) A , m(Mo-Ka) = 0.899, T = 180(2) K, Z = 8,
ꢂ3
D
R
c
= 1.728 mg m , F(000) = 872, independent reflections 4388
int = 0.056). The structure was solved by direct methods and refined
2
and ꢄ1 for 3).
(
by full-matrix least-squares on F using the SHELXTL program
2
In 2 there is a steady increase in intensity of the spectrum in
10
package.
(I 4 2s(I)) = 0.046, wR
ꢀ
2 2 2
Crystal data for 3: C Cl N S , M = 250.13, triclinic, P1, a =
Non-hydrogen atoms were anisotropically refined.
the g = 2 region above 150 K (a double integral of the EPR
signal follows the behaviour of the w vs. T data from SQUID
magnetometry; see SUP-07). Whilst there is some dipolar
broadening associated with the increase in the number of
paramagnetic centres generated, no additional features are
observed (Fig. 5a). Conversely the EPR spectrum of 3
above 150 K shows clear evidence for the presence of a triplet
state reflected in (i) additional features attributable to zero-
field splitting and (ii) the observation of the forbidden
R
1
2
(all data) = 0.133, S = 1.164 (all data).
7
H
3
˚
7.3271(2), b = 10.3563(3), c = 24.6666(7) A, a = 88.096(2), b =
3
˚
8
T = 180(2) K, Z = 8, D
1.458(2), g = 77.0090(10)1, V = 1803.60(9) A , m(Mo-Ka) = 1.127,
ꢂ3
c
= 1.842 mg m , F(000) = 1000,
independent reflections 5799 (Rint = 0.0395). The structure was solved
2
by direct methods and refined by full-matrix least-squares on F using
10
the SHELXTL program package.
anisotropically refined. R (I 4 2s(I)) = 0.049, wR
S = 1.050 (all data).
Non-hydrogen atoms were
1
2
(all data) = 0.112,
1
2
A. Alberola, J. M. Rawson and A. L. Whalley, J. Mater. Chem.,
006, 16, 2560; K. Preuss, Dalton Trans., 2007, 2357.
DM
spin Hamiltonian parameters for this S = 1 species were
= 2.002, g = 2.008, g = 2.021; |D| = 0.0183,
E| = 0.0008 cm . Fig 5b also includes a contribution from
s
= ꢃ2 transition in the half-field region (Fig 5b). The
2
A. J. Banister, N. Bricklebank, I. Lavender, J. M. Rawson,
C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood and
F. Palacio, Angew. Chem., Int. Ed. Engl., 1996, 35, 2533;
A. Alberola, R. J. Less, C. M. Pask, J. M. Rawson, F. Palacio,
P. Oliete, C. Paulsen, A. Yamaguchi, R. D. Farley and
D. M. Murphy, Angew. Chem., Int. Ed., 2003, 42, 4782.
g
x
y
z
ꢂ1
|
a rhombic S = 1 EPR spectrum associated with isolated
2
DTDA radicals (see above). The behaviour of 3 is consistent
with an S = 0 ground state with thermally accessible triplet
9
3 G. Antorrena, J. E. Davies, M. Hartley, F. Palacio, J. M. Rawson,
J. N. B. Smith and A. Steiner, Chem. Commun., 1999, 1393;
A. Alberola, R. J. Less, F. Palacio, C. M. Pask and J. M. Rawson,
Molecules, 2004, 9, 771; A. Alberola, C. S. Clarke, D. A. Haynes,
S. I. Pascu and J. M. Rawson, Chem. Commun., 2005, 4726.
4 (a) J. Britten, N. G. R. Hearns, K. E. Preuss, J. F. Richardson and
S. Bin-Salomon, Inorg. Chem., 2007, 46, 3934; (b) S. A. Fairhurst,
K. M. Johnson, L. H. Sutcliffe, K. F. Preston, A. J. Banister,
Z. V. Hauptman and J. Passmore, J. Chem. Soc., Dalton Trans.,
1986, 1465; P. S. White, A. J. Banister, H. Oberhammer and
L. H. Sutcliffe, Chem. Commun., 1987, 66; A. J. Banister and
J. Passmore, et al., Chem. Commun., 1987, 66; W. V. F. Brooks,
N. Burford, J. Passmore, M. J. Schriver and L. H. Sutcliffe, Chem.
Commun., 1987, 69.
configuration (Fig. 6). A fit of both the w vs. T data and EPR
signal intensity to the Bleaney–Bowers equation up to
2
2
30 K provides an estimate of the singlet–triplet separation
J/k E ꢂ1300 K (comparable with previously reported
9
dithiadiazolyl radicals with 2J/k E ꢂ2400 K). Above 230 K,
both w and the EPR signal intensity rise more steeply than the
model predicts, consistent with small thermal expansion of
the intradimer Sꢁ ꢁ ꢁS distance leading to a weakening of the
exchange coupling. An improved fit (up to 280 K) can
be achieved using
a small temperature-dependence of
2
J [J = ꢂ880 + 0.005T (Fig. 4)].
5 Crystal Engineering: The Design of Organic Solids, G. R. Desiraju,
Materials Science Monographs, 54, Elsevier Press, 1989.
The paramagnetism in 2 may be due to the breakdown of
1
6
J. M. Rawson, A. J. Banister and I. Lavender, Adv. Heterocycl.
Chem., 1995, 62, 137.
7 N. Feeder, R. J. Less, J. M. Rawson, P. Oliete and F. Palacio,
the dimer E, generating S = radicals. Conversely, whilst
2
both 2 and 3 possess dimers of type A, the shorter mean
intradimer SꢁꢁꢁS contact in 2 (cf. the dichlorophenyl derivative 3)
may lead to stronger bonding and a less accessible triplet
configuration. Thus the paramagnetism in 2 appears to arise
Chem. Commun., 2000, 2449.
8
S. A. Fairhurst, L. H. Sutcliffe, K. F. Preston, A. J. Banister,
A. S. Partington, J. M. Rawson, J. Passmore and M. J. Schriver,
Magn. Reson. Chem., 1993, 31, 1027.
1
2
from formation of S = states whereas the paramagnetism in
9 A. Decken, T. S. Cameron, J. Passmore, J. M. Rautiainen,
R. W. Reed, K. V. Shuvaev and L. K. Thompson, Inorg. Chem.,
3
appears due to thermal population of a triplet configuration.
The current studies reveal that partial chlorination of the
2007, 46, 7436; K. V. Shuvaev, A. Decken, F. Grein, T. S. M. Abedin,
L. K. Thompson and J. Passmore, Dalton Trans., 2008, 4029.
0 G. M. Sheldrick, SHELXTL Crystallographic suite for PC, Siemens
Analytical Instrument Division, Madison, WI, USA, 1997.
aromatic substituent is sufficient to weaken the conventional
1
p*–p* dimerisation process associated with DTDA radicals.
2
534 Chem. Commun., 2011, 47, 2532–2534
This journal is c The Royal Society of Chemistry 2011