Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 4
COMMUNICATION
Journal Name
d) E. E. Golub and K. B.-Battaglia, Curr. Opin. Orthop., 2007,
incubation time to 20 min, the peak belongs to SA converted to
the major product, indicating that dephosphorylation was
nearly completed. Furthermore, dynamic light scattering (DLS)
analysis revealed that the colloidal aggregates was formed with
(
1
DOI: 10.1039/D0CC06129H
8, 444; (e) K. Poelstra, W. W. Bakker, P. A. Klok, J. A. Kamps,
M. J. Hardonk and D. K. Meijer, Am. J. Pathol., 1997, 151,
163.
1
2
49.4 nm average particle diameter for the incubation mixture
3
(a) W. J. Lammers, H. R. van Buuren, G. M. Hirschfield, H. L.
Janssen, P. Invernizzi, A. L. Mason, C. Y. Ponsioen, A. Floreani,
C. Corpechot, M. J. Mayo, et.al, Gastroenterology, 2014, 147,
of AE-Phos and ALP (Fig. S7B). However, no colloidal aggregates
were observed with AE-Phos only in Tris buffer by DLS.
Therefore, the reaction mechanism is proposed as follows (Fig.
S7C). ALP first catalyses the dephosphorylation of AE-Phos to
produce intermediate compound AE-OH-Phos, which contains
one phosphate group and shows very weak fluorescence.
1
3
338; (b) M. Yi, F. Bodola and S. M. Lemon, Virology, 2002,
04, 197; (c) J. J. Stepan, J. Presl, P. Broulik and V. Pacovsky, J.
Clin. Endocrinol. Metab., 1987, 64, 1079; (d) S. Poppema, J. D.
Elema and M. R. Halie, Cancer, 1981, 47, 1303; (e) Y. Lu, Q. Lu
and H. L. Chen, J. Exp. Clin. Cancer Res., 1997, 16, 75; (f) M. L.
Warnock and R. Reisman, Clin. Chim. Acta., 1969, 24, 5.
(a) Y. Yang, Q. Zhao, W. Feng and F. Li, Chem. Rev., 2013, 113,
Subsequently,
AE-OH-Phos
undergoes
the
second
4
5
dephosphorylation step and releases AE-Phos as the final
product, which forms aggregates owing to the intramolecular
hydrogen bond and increased hydrophobicity. The aggregation
state of SA exhibits strong fluorescent signal due to the
combined AIE and ESIPT mechanism.
1
2
92; (b) J. Chan, S. C. Dodani and C. J. Chang, Nat. Chem.,
012, 4, 973; (c) R. T. Kwok, C. W. Leung, J. W. Lam and B. Z.
Tang, Chem. Soc. Rev., 2015, 44, 4228.
(a) H. Zhang, P. Xiao, Y.T. Wong, W. Shen, M. Chhabra, R.
Peltier, Y. Jiang, Y. He, J. He, Y. Tan, et.al, Biomaterials, 2017,
1
40, 220; (b) Y. Tan, L. Zhang, K. H. Man, R. Peltier, G. Chen, H.
In summary, a new fluorescent probe, AE-Phos, for ALP
activity detection in both aqueous buffer and living cells have
been constructed herein. After dephosphorylation by ALP, the
phosphate groups of AE-Phos are removed and the hydroxyl
groups are released. The free hydroxyl groups can form
intramolecular hydrogen bond with nitrogen atoms, generating
stacking of molecules and exhibiting strong fluorescence by AIE
and ESIPT effect. The reaction mechanism has been firmly
verified by different methods including fluorimeter, UPLC and
DLS. Moreover, AE-Phos exhibited good water solubility,
excellent selectivity and fast response when reacting with ALP.
Specially, after reacting with ALP, AE-Phos revealed more than
Zhang, L. Zhou, F. Wang, D. Ho, S. Q. Yao, et.al, ACS Appl.
Mater. Inter., 2017, 9, 6796; (c) R. Yan, Y. Hu, F. Liu, S. Wei, D.
Fang, A. J. Shuhendler, H. Liu, H. Y. Chen and D. Ye, J. Am.
Chem. Soc., 2019, 141, 10331; (d) X. Hou, Q. Yu, F. Zeng, J. Ye
and S. Wu, J. Mater. Chem. B, 2015, 3, 1042; (e) L. Xu, X. He,
Y. Huang, P. Ma, Y. Jiang, X. Liu, S. Tao, Y. Sun, D. Song and X.
Wang, J. Mater. Chem. B, 2019, 7, 1284; (f) T. I. Kim, H. Kim, Y.
Choi and Y. Kim, Chem. Commun., 2011, 47, 9825; (g) J. Liu, D.
Tang, Z. Chen, X. Yan, Z. Zhong, L. Kang and J. Yao, Biosens.
Bioelectron., 2017, 94, 271; (h) C. Gao, S. Zang, L. Nie, Y. Tian,
R. Zhang, J. Jing and X. Zhang, Anal. Chim. Acta., 2019, 1066,
1
31; (i) Y. Han, J. Chen, Z. Li, H. Chen and H. Qiu, Biosens.
Bioelectron., 2020, 148, 111811; (j) C. Zhang, Q.-Z. Zhang, K.
Zhang, L.-Y. Li, M. D. Pluth, L. Yi and Z. Xi, Chem. Sci., 2019, 10,
1945; (k) Y. Li, H. Song, C. Xue, Z. Fang, L. Xiong and H. Xie,
Chem. Sci., 2020, 11, 5889; (l) S. Gnaim, A. Scomparin, A.
Eldar-Boock, C. R. Bauer, R. Satchi-Fainaro and D. Shabat,
Chem. Sci., 2019, 10, 2945.
2
40-fold turn-on ratio and 180 nm Stokes shift, testifying its
advantages over most probes in the reported literatures. Most
importantly, AE-Phos displayed the capability of differentiating
and visualizing endogenous ALP activity in different cell lines
such as human osteoblastic cells, murine melanoma cells and
macrophages.
6
7
(a) D. Ding, K. Li, B. Liu and B. Z. Tang, Acc. Chem. Res., 2013,
4
6, 2441; (b) R. Hu, N. L. Leung and B. Z. Tang, Chem. Soc. Rev.,
2014, 43, 4494; (c) J. Qian and B. Z. Tang, Chem, 2017, 3, 56;
(d) H. Wang, E. Zhao, J. W. Y. Lam and B. Z. Tang, Mater.
This work was supported by the National Natural Science
Foundation of China (No. 21807014, 21602033), Guangdong
Today, 2015, 18, 365.
(a) A. C. Sedgwick, L. Wu, H. H. Han, S. D. Bull, X. P. He, T. D.
James, J. L. Sessler, B. Z. Tang, H. Tian and J. Yoon, Chem. Soc.
Rev., 2018, 47, 8842; (b) V. S. Padalkar and S. Seki, Chem. Soc.
Rev., 2016, 45, 169.
Basic
and
Applied
Basic
Research
Foundation
(2020A1515010986, 2020A1515011463), Sichuan Science and
Technology Program (2018JY0360), Shenzhen Basic Research
Project (JCYJ20180507181654823), the Pearl River Talent Plan
of Guangdong Province (2017GC010596).
8
9
W. X. Tang, Y. Xiang and A. J. Tong, J. Org. Chem., 2009, 74,
2
163.
(a) L. Peng, M. Gao, X. Cai, R. Zhang, K. Li, G. Feng, A. Tong and
B. Liu, J. Mater. Chem. B, 2015, 3, 9168; (b) R. Zhang, M. Gao,
S. Bai and B. Liu, J. Mater. Chem. B, 2015, 3, 1590; (c) H. Song,
Y. Zhou, H. Qu, C. Xu, X. Wang, X. Liu, Q. Zhang and X. Peng,
Ind. Eng. Chem. Res., 2018, 57, 15216; (d) H. W. Liu, K. Li, X. X.
Hu, L. Zhu, Q. Rong, Y. Liu, X. B. Zhang, J. Hasserodt, F. L. Qu
and W. Tan, Angew Chem. Int. Ed., 2017, 56, 11788; (e) Y. Li,
R. Xie, X. Pang, Z. Zhou, H. Xu, B. Gu, C. Wu, H. Li and Y. Zhang,
Talanta, 2019, 205, 120143; (f) M. Gao, Q. Hu, G. Feng, B.Z.
Tang and B. Liu, J. Mater. Chem. B, 2014, 2, 3438.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) J. E. Coleman, Annu. Rev. Biophys. Biomol. Struct., 1992, 21
41; (b) J. E. Coleman and P. Gettins, Adv. Enzymol. Relat.
1
1
0 D. H. Kohn, M. Sarmadi, J. I. Helman and P. H. Krebsbach, J.
Biomed. Mater. Res., 2002, 60, 292.
4
Areas. Mol. Biol., 2006, 55, 381; (c) P. J. Butterworth, Cell
Biochem. Funct., 1983, 1, 66.
1 (a) J. Zhou, X. Du, C. Berciu, H. He, J. Shi, Da. Nicastro and B.
Xu, Chem, 2016, 1, 246; (b) J. Delgado-Calle, C. Sañudo, L.
Sánchez-Verde, R. J. García-Renedo, J. Arozamena and J. A.
Riancho, Bone, 2011, 49, 830.
2
(a) V. Kermer, M. Ritter, B. Albuquerque, C. Leib, M. Stanke
and H. Zimmermann, Neurosci. Lett., 2010, 485, 208; (b) T.
Nakamura, A. Nakamura-Takahashi, M. Kasahara, A.
Yamaguchi and T. Azuma, Biochem. Biophys. Res. Commun.,
1
2 H. Song, Y. Li, Y. Chen, C. Xue and H. Xie, Chem. Eur. J., 2019,
2
5, 13994.
2
020, 524, 702; (c) A. Nizet, E. Cavalier, P. Stenvinkel, M.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins