3
1
13
applied with no positive results, while adding ZnCl gave the
OCH2 H and C NMR shifts for compounds 4b-f are 5.7-5.2
2
target furopyrimidines in negligible amounts. Cyclization without
solvent upon melting gave the target furo[2,3-d]pyrimidines in
low yields (1525%) due to decomposition of the starting
material. When the reactions were carried out on silica gel at
elevated temperature (230240 °C) furo[2,3-d]pyrimidines 6a-f
were obtained in moderate to good (5076%) yields.
ppm and 68.4-66.6 ppm, respectively, while the same methylene
signals of the N-alkylation and C -alkylation products would be
5
found upfield. Subsequent intramolecular cyclization of
compounds 4a-f gives the target furo[2,3-d]pyrimidines 6a-f; this
was proven beyond doubt by X-ray crystallography of compound
1
8
6b (Fig. 1).
Figure 1. Crystal structure of compound 6b.
3
. Conclusion
In conclusion, an effective two-step protocol for the formation
of 5-substituted furo[2,3-d]pyrimidine derivatives has been
developed. The reactions proceed in moderate-to-good yields,
and silica gel appears to be a good choice for preventing
intermolecular interactions (thus the formation of side products
and decomposition) for high temperature intramolecular
reactions, when compared to the typical high boiling solvents or
performing the reaction upon compound melting.
Scheme 2. Reagents and conditions: (i) Silica gel, 230-240 °C (Wood’s
metal bath temperature).
The structural assignments of compounds 6a-f were based on
1
spectroscopic data. The H NMR spectra of compounds 4a-f
th
show a singlet peak for the proton at the pyrimidine 5 position
(
5.595.55 ppm). Conversely, furo[2,3-d]pyrimidines 6a-f lack
Acknowledgments
1
this singlet, and the H NMR spectra show a singlet peak for the
proton at the furo[2,3-d]pyrimidine 6 position (8.228.04 ppm).
Other H NMR spectroscopic data were also consistent with the
th
This work is a part of ongoing program “Synthesis and
functionalization of fused pyrimidine heterocycles, study on
heterocyclization reactions” (2015-2020). We would like to thank
Dr. Audrius Bucinskas for X-ray crystal structure measurements
and analysis.
1
expected structures.
Table 1. O-Alkylation yields for the reaction of 2-
methylthiopyrimidin-4,6-dione using NaH as a base and the
References and notes
yields of furo[2,3-d]pyrimidines.
1
Entry
R, R
Yield (%) Yield (%) Yield (%) Cyclization reaction
1. (a) Gangjee, A.; Devraj, R.; McGuire, J. J.; Kisliuk, R. L.;
a, b
a, b
a
4
5
6
time (min)
Queener, S. F.; Barrows, L. R. J. Med. Chem. 1994, 37, 1169-
b
b
1
176; (b) Gangjee, A.; Zeng, Y.; McGuide, J. J.; Kisliuk, R. L. J.
1
2
3
4
5
Ph, Ph
Ph, H
4a (62) 5a (15)
6a (76)
6b (64)
6c (51)
6d (54)
6e (50)
6f (65)
70
55
Med. Chem. 2005, 48, 5329-5336; (c) Gangjee, A.; Li, W.; Lin,
L.; Zeng, Y.; Ihnat, M.; Warnke, L. A.; Green, D. W.; Cody, V.;
Pace, J.; Queener, S. F. Bioorg. Med. Chem. 2009, 17, 7324-7336;
4b (63) 5b (26)
4c (47) 5c (29)
4d (48) 5d (29)
4-Br-C
4-Ph-C
4-OMe-C
tert-butyl, H
6
H
4
, H
, H
60
45
6
H
4
(d) Gangjee, A.; Jain, H. D.; Phan, J.; Guo, X.; Queener, S. F.;
6
H
4
, H 4e (53) 5e (27)
4f (58) 5f (23)
65
130
Kisliuk, R. L. Bioorg. Med.Chem. 2010, 18, 953-961.
6
a
b
2. (a) Maeda, Y.; Nakano, M.; Sato, H.; Miyazaki, Y.; Schweiker, S.
L.; Smith, J. L.; Truesdale, A. T. Bioorg. Med. Chem. Lett. 2004,
isolated yields; methanesulfonate was used as a bifunctional electrophile.
1
4, 3907-3911; (b) Miyazaki, Y.; Meada, Y.; Sato, H.; Nakano,
M.; Mellor, G. W. Bioorg. Med. Chem. Lett. 2008, 18, 1967-
971.
1
3
Due to lactam-lactim tautomerism the C NMR spectra of O-
1
th
alkylated pyrimidines 4a-f lack peaks corresponding to the 4
3. (a) Hwang, E. J.; Cheong, C. S.; Lee, H.; Lee, S. W.; Lee, S. H.
Bull. Korean Chem. Soc. 2005, 26, 986-988; (b) Pyo, J. I.; Hwang,
E. J.; Cheong, C. S.; Lee, S. H.; Lee, S. W.; Kim, I. T.; Lee, S. H.
Synthetic Metals 2005, 155, 461-463.
th
and 6 pyrimidine carbons when recorded in DMSO-d6.
Recording the spectra in CDCl (4a and 4f) or Py-d (4b-e)
allowed all carbon peaks to be recorded, presumably due to a
change in tautomerism.
3
5
4
.
Janeba, Z.; Holý, A.; Pohl, R.; Snoeck, R.; Andrei, G.; De
Clercq, E.; Balzarini, J. Can. J. Chem. 2010, 88, 628-638.
5
.
(a) McGuigan, C.; Barucki, H.; Blewett, S.; Carangio, A.;
Erichsen, J. T.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.
J. Med. Chem. 2000, 43, 4993-4997; (b) Blewett, S.; McGuigan,
C.; Baruki, H.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, I.
Nucleosides Nucleotides Nucleic Acid 2001, 20, 1063-1066; (c)
Liu, Z.; Li, D.; Li, S.; Bai, D.; He, X.; Hu, Y. Tetrahedron 2007,
This two-step synthetic protocol relies on selective O-
alkylation. N-Alkylation and C -alkylation pathways were also
5
6
3, 1931-1936.
6
7
8
.
.
.
Bunz, U. H. F. Chem. Rev. 2000, 100, 1605-1644.
Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874-922.
Dauzonne, D.; Adam-Launay, A. Tetrahedron 1992, 48, 3069-
3
080.
9
1
1
.
Dauzonne, D.; Demerseman, P. Synthesis 1990, 1, 66-70.
0. Li, C.; Zhang, F. Tetrahedron Lett. 2017, 58, 1572–1575.
1. Masevicius, V.; Petraityte, G.; Tumkevicius, S. Chem. Heterocycl.
Comp. 2009, 45, 357-360.
1
1
2. Rival, Y.; Taudou, A.; Ecalle, R. Farmaco 1993, 48, 857-869.
3. (a) Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. Tetrahedron
2
007, 63, 4680-4687; (b) Cutulic, S. P. Y.; Findlay, N. J.; Zhou, S-
Z.; Chrystal, E. J. T.; Murphy, J. A. J. Org. Chem. 2009, 74, 8713-
718.
8
considered, but were excluded based on spectroscopic data. The
14. (a) Doláková, P.; Dracínský, M.; Masojídková, M.; Šolínová, V.;
Kašicka, V.; Holý, A. Eur. J. Med. Chem. 2009, 44, 2408-2424;