Page 5 of 8
Journal of the American Chemical Society
Soc. 2003, 125, 3867-3870; (c) Klatt, T.; Markiewicz, J. T.; Sämann, C.;
Knochel, P. Strategies To Prepare and Use Functionalized Organometallic
Reagents. J. Org. Chem. 2014, 79, 4253-4269; (d) Haas, D.; Hammann, J.
M.; Greiner, R.; Knochel, P. Recent Developments in Negishi Cross-Cou-
pling Reactions. ACS Catal. 2016, 6, 1540-1552.
(27) For a thorough discussion on iodide additives in nickel-catalyzed
cross-electrophile coupling, see reference 28a and references cited therein.
For the effect of MgCl2 and LiBr on the reduction of nickel complexes at
metal surfaces, see references 28b and 20, respectively.
(28) (a) Everson, D. A.; Jones, B. A.; Weix, D. J., Replacing Conventional
Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkyl-
ation of Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2012, 134, 6146-
6159; (b) Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.;
Wang, X.; Gong, H. Ni-Catalyzed Reductive Coupling of Electron-Rich Aryl
Iodides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 14490-
14497.
(29) Other non-coordinating anions also appeared to be inhibitory, such
as BF4 and PF6. While zinc appears to be inhibitory (ZnCl2 slowed reduc-
tion), both LiCl2 and Bu4NCl accelerated reduction, suggesting that there is
not a special lithium effect, but rather a special zinc effect. See Supporting
Information Table S2 for additional data.
(30) A mixture of solvents was used to help with solubility of pre-catalyst
solutions. DMF provided the same yields and selectivities as the mixture. See
Supporting Information Table S1.
(31) While most isolated reactions were run for 24 h for convenience, the
reaction in Table 1 was 90% complete in 2 h and finished in less than 8 h
when run under nitrogen.
(32) The homodimerization of hindered aryl bromides with nickel has
been reported. See the following reference and references cited therein:
Hong, R.; Hoen, R.; Zhang, J.; Lin, G.-Q. Nickel-catalyzed Ullmann-type
Coupling Reaction to Prepare Tetra-ortho-substituted Biaryls. Synlett 2001,
1527-1530.
(33) Biaryls with four different ortho-substituents are still not coupled in
high yield. For these types of substrates, cross-coupling with organometallic
reagents is the best approach: (a) Altenhoff, G.; Goddard, R.; Lehmann, C.
W.; Glorius, F. An N-Heterocyclic Carbene Ligand with Flexible Steric Bulk
Allows Suzuki Cross-Coupling of Sterically Hindered Aryl Chlorides at
Room Temperature. Angew. Chem., Int. Ed. 2003, 42, 3690-3693; (b)
Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. The
Development of Bulky Palladium NHC Complexes for the Most-Challeng-
ing Cross-Coupling Reactions. Angew. Chem., Int. Ed. 2012, 51, 3314-3332.
(34) (a) Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson,
A. L.; Pierce, M. E.; Price, W. A.; Santella, J. B.; Wells, G. J. Nonpeptide an-
giotensin II receptor antagonists: the discovery of a series of N-(bi-
phenylylmethyl)imidazoles as potent, orally active antihypertensives. J. Med.
Chem. 1991, 34, 2525-2547; (b) Kubo, K.; Kohara, Y.; Yoshimura, Y.; Inada,
Y.; Shibouta, Y.; Furukawa, Y.; Kato, T.; Nishikawa, K.; Naka, T. Nonpep-
tide angiotensin II receptor antagonists. Synthesis and biological activity of
potential prodrugs of benzimidazole-7-carboxylic acids. J. Med. Chem. 1993,
36, 2343-2349; (c) Wexler, R. R.; Greenlee, W. J.; Irvin, J. D.; Goldberg, M.
R.; Prendergast, K.; Smith, R. D.; Timmermans, P. B. M. W. M. Nonpeptide
Angiotensin II Receptor Antagonists:ꢀ The Next Generation in Antihyper-
tensive Therapy. J. Med. Chem. 1996, 39, 625-656.
(35) (a) Johnson, K. A.; Biswas, S.; Weix, D. J. Cross-Electrophile Cou-
pling of Vinyl Halides with Alkyl Halides. Chem.—Eur. J. 2016, 22, 7399-
7402; (b) Huang, L.; Hackenberger, D.; Gooßen, L. J. Iridium-Catalyzed or-
tho-Arylation of Benzoic Acids with Arenediazonium Salts. Angew. Chem.,
Int. Ed. 2015, 54, 12607-12611; (c) Durandetti, M.; Gosmini, C.; Périchon,
J. Ni-catalyzed activation of α-chloroesters: a simple method for the synthe-
sis of α-arylesters and β-hydroxyesters. Tetrahedron 2007, 63, 1146-1153.
(36) (a) Peretto, I.; Radaelli, S.; Parini, C.; Zandi, M.; Raveglia, L. F.;
Dondio, G.; Fontanella, L.; Misiano, P.; Bigogno, C.; Rizzi, A.; Riccardi, B.;
Biscaioli, M.; Marchetti, S.; Puccini, P.; Catinella, S.; Rondelli, I.; Cenacchi,
V.; Bolzoni, P. T.; Caruso, P.; Villetti, G.; Facchinetti, F.; Del Giudice, E.;
Moretto, N.; Imbimbo, B. P. Synthesis and Biological Activity of Flurbi-
profen Analogues as Selective Inhibitors of β-Amyloid1-42 Secretion. J. Med.
Chem. 2005, 48, 5705-5720; (b) Quasdorf, K. W.; Riener, M.; Petrova, K.
1
2
3
4
5
6
7
8
reductants is known. For two examples, see: (a) Fujihara, T.; Nogi, K.; Xu,
T.; Terao, J.; Tsuji, Y. Nickel-Catalyzed Carboxylation of Aryl and Vinyl
Chlorides Employing Carbon Dioxide. J. Am. Chem. Soc. 2012, 134, 9106-
9109; (b) Charboneau, D. J.; Brudvig, G. W.; Hazari, N.; Lant, H. M. C.;
Saydjari, A. K. Development of an Improved System for the Carboxylation
of Aryl Halides through Mechanistic Studies. ACS Catalysis 2019, 9, 3228-
3241.
(18) Cyclic voltammetry studies on the reduction of III showed only an
apparent two-electron reduction at -0.86 V vs SCE (Supporting Information
Figure S7). The observed reduction potential did not depend upon the
counterion on nickel (Cl or OTf) or the electrolyte (Bu4NPF6 or Bu4NCl),
suggesting that all of these species were ionized in solution. These results
match those previously reported for related catalysts: (a) Durandetti, M.;
Devaud, M.; Périchon, J. Investigation of the reductive coupling of aryl hal-
ides and/or ethylchloroacetate electrocatalyzed by the precursor
NiX(2)(bpy) with X(-)=Cl-, Br- or MeSO(3)(-) and bpy equals 2,2'-di-
pyridyl. New J. Chem. 1996, 20, 659-667; (b) Mikhaylov, D.; Gryaznova, T.;
Dudkina, Y.; Khrizanphorov, M.; Latypov, S.; Kataeva, O.; Vicic, D. A.;
Sinyashin, O. G.; Budnikova, Y., Electrochemical nickel-induced fluoroalkyl-
ation: synthetic, structural and mechanistic study. Dalton Trans., 2012, 41,
165–172.
(19) This strategy for evaluating the reduction of nickel(II) to nickel(0)
grew out of our studies on nickel(0) complexes and their reactivity. We pre-
viously reported this approach (with LiBr over Mn surfaces, reference 20a).
(20) (a) Huang, L.; Olivares, A. M.; Weix, D. J. Reductive Decarboxyla-
tive Alkynylation of N-Hydroxyphthalimide Esters with Bromoalkynes. An-
gew. Chem., Int. Ed. 2017, 56, 11901-11905; (b) Ni, S.; Muñoz Padial, N.;
Kingston, C.; Vantourout, J. C.; Schmitt, D. C.; Edwards, J. T.; Kruszyk, M.;
Merchant, R. R.; Mykhailiuk, P. K.; Sanchez, B.; Yang, S.; Perry, M.; Gallego,
G. M.; Mousseau, J. J.; Collins, M. R.; Cherney, R. J.; Lebed, P. S.; Chen, J.
S.; Qin, T.; Baran, P. S., A Radical Approach to Anionic Chemistry: Synthe-
sis of Ketones, Alcohols, and Amines. J. Am. Chem. Soc. 2019, 141, 6726-
6739.
(21) The effect of LiCl on reduction of organic halides has been studied in
some detail: (a) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P.
Efficient Synthesis of Functionalized Organozinc Compounds by the Direct
Insertion of Zinc into Organic Iodides and Bromides. Angew. Chem., Int. Ed.
2006, 45, 6040-6044; (b) Koszinowski, K.; Böhrer, P. Formation of Or-
ganozincate Anions in LiCl-Mediated Zinc Insertion Reactions. Organome-
tallics 2009, 28, 771-779; (c) Feng, C.; Cunningham, D. W.; Easter, Q. T.;
Blum, S. A. Role of LiCl in Generating Soluble Organozinc Reagents. J. Am.
Chem. Soc. 2016, 138, 11156-11159; (d) Jess, K.; Kitagawa, K.; Tagawa, T.
K. S.; Blum, S. A. Microscopy Reveals: Impact of Lithium Salts on Elemen-
tary Steps Predicts Organozinc Reagent Synthesis and Structure. J. Am.
Chem. Soc. 2019, 141, 9879-9884.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22) These results do not conclusively show that nickel(0) is the opera-
tive oxidation state of the nickel catalyst. Love and Schaefer have recently
shown that alkene ligands can influence the relative stability of nickel(I) and
nickel(II/0). See the following reference.
(23) Beattie, D. D.; Lascoumettes, G.; Kennepohl, P.; Love, J. A.; Schafer,
L. L. Disproportionation Reactions of an Organometallic Ni(I) Amidate
Complex: Scope and Mechanistic Investigations. Organometallics 2018, 37,
1392-1399.
(24) Huo, S. Highly Efficient, General Procedure for the Preparation of
Alkylzinc Reagents from Unactivated Alkyl Bromides and Chlorides. Org.
Lett. 2003, 5, 423-425.
(25) As determined by 31P NMR vs an internal standard. The DMF/THF
solvent mixture was used because the palladium complexes were poorly sol-
uble in pure DMF. The catalytic reaction works well in DMF/THF mixtures.
For detailed conditions, see the Supporting Information Figures S9-S12.
(26) Another alternative hypothesis is insertion of zinc into Ar-Cl or Ar-
OTf bonds to form arylzinc reagents. This does not happen under our con-
ditions, consistent with the literature: (a) Jin, M.-Y.; Yoshikai, N. Co-
balt−Xantphos-Catalyzed, LiCl-Mediated Preparation of Arylzinc Reagents
from Aryl Iodides, Bromides, and Chlorides. J. Org. Chem. 2011, 76, 1972-
1978; (b) Fillon, H.; Gosmini, C.; Périchon, J. New chemical synthesis of
ACS Paragon Plus Environment
functionalized arylzinc compounds from aromatic or thienyl bromides un-
der mild conditions using a simple cobalt catalyst and zinc dust. J. Am. Chem.