Please do not adjust margins
Journal of Materials Chemistry C
Page 7 of 8
DOI: 10.1039/C7TC04092J
Journal Name
ARTICLE
11 a) F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem. Soc., 1994, 116,
5969–5970; b) A. S. Guram and S. L. Buchwald, J. Am. Chem.
Soc., 1994, 116, 7901–7902.
electrochemical potential of 0.64 V for Fc+/Fc versus NHE. See:
C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan,
Adv. Mater., 2011, 23, 2367–2371.
12 B. D. Lindner, J. U. M. Märken, O. Tverskoy, A. L. Appleton, F. 26 M. Rosenberg, C. Dahlstrand, K. Kilsa and H. Ottosson, Chem.
Rominger, K. I. Hardcastle, M. Enders and U. H. F. Bunz, Chem.—
Eur. J., 2012, 18, 4627−4633.
Rev., 2014, 114, 5379–5425.
27 A. Grabowska and B. Paluła, Photochem. Photobio., 1969, 9,
339–350.
13 T. A. Albright, S. Oldenhof, O. A. Oloba, R. Padilla and K. P. C.
Vollhardt, Chem. Commun., 2011, 47, 9039–9041.
14 a) W. J. Youngblood, J. Org. Chem. 2006, 71, 3345–3356; b) J.
Wang and L. Wang, CN1887851, 2007.
28. E. V. Anslyn and D. A. Dougherty, Modern Physical Organic
Chemistry, University Science Books, Sausalito, 2004, ch. 1, pp.
26–51.
15 J. D. Spence, A. C. Rios, M. A. Frost, C. D. McCutcheon, C. M. 29. C. D. Cruz, P. R. Christensen, E. L. Chronister, D. Casanova, M. O.
Cox, S. Chavez, R. Fernandez and B. F. Gherman, J. Org. Chem.,
2012, 77, 10329−10339.
Wolf and C. J. Bardeen, J. Am. Chem. Soc., 2015, 137, 12552–
12564.
16 V. R. Thalladi, T. Smolka, A. Gehrke, R. Boese and R. Sustmann, 30 B. Milián-Medina and J. Gierschner, WIREs Comput Mol Sci,
New J. Chem., 2000, 24, 143−147. 2012, 2, 513–524.
17 J. J. Bryant, Y. Zhang, B. D. Lindner, E. A. Davey, A. L. Appleton, 31. a) T. Higashino, T. Yamada, T. Sakurai, S. Seki and H. Imahori,
X. Qian and U. H. F. Bunz, J. Org. Chem., 2012, 77, 7479−7486.
18 CCDC 1570598, 1570599 and 1570601 contain the
supplementary crystallographic data for 3b, 4a and 6a,
respectively. These data can be obtained free of charge from
Angew. Chem. Int. Ed., 2016, 55, 12311–12315; b) Y. Yamaguchi,
K. Ogawa, K. Nakayama, Y. Ohba and H. Katagiri, J. Am. Chem.
Soc., 2013, 135, 19095–19098.
the
Cambridge
Crystallographic
Data
Centre
via
19 P. Biegger, S. Stolz, S. N. Intorp, Y. Zhang, J. U. Engelhart, F.
Rominger, K. I. Hardcastle, U. Lemmer, X. Qian, M. Hamburger
and U. H. F. Bunz, J. Org. Chem., 2015, 80, 582−589.
20 J. K. Fawcett and J. Trotter, Acta Crystallogr, 1966, 20, 87−93.
21 E. V. Anslyn and D. A. Dougherty, Modern Physical Organic
Chemistry, University Science Books, Sausalito, 2004, ch. 1, pp.
22.
22 A. Schleifenbaum, N. Feeder and K. P. C. Vollhardt, Tetrahedron
Lett., 2001, 42, 7329–7332.
23 a) J. Kruszewski and T. M. Krygowski, Tetrahedron Lett., 1972,
3839–3842; b) T. M. Krygowski J. Chem. Inf. Comput. Sci., 1993,
33, 70–78.
24 HOMA is a quantitative measure of aromaticity based on bond
length as defined by
ꢏꢏ
ꢕꢕ
∑
HOMA = 1- ꢎ
ꢑRꢒꢓꢔ-Rꢕꢖ ꢕ
ꢗ
ꢅ for a carbocycle, or
ꢐ
ꢅ
ꢅ
HOMA = 1 − ꢘꢄ ꢙꢚꢛꢛ ꢑꢜꢝꢞꢟ − ꢜꢛꢛꢗ + ꢚꢛꢡ ꢑꢜꢝꢞꢟ − ꢜꢛꢡꢗ ꢢ
ꢛꢛ
ꢛꢡ
∑
∑
ꢠ
ꢠ
for a N-heterocycle, where n is the number of bonds taken into
the summation, αCC = 257.7 and αCN = 93.52 are empirical
normalization constants chosen to give HOMA = 0 for the
hypothetical Kekulé structures of the typical aromatic systems
with alternation of single and double bonds and HOMA = 1 for
the system with all bond lengths equal to the optimal value Ropt
(1.388 Å for C-C bonds and 1.334 Å for C-N bonds), and Ri is the
individual bond length in the ring. See: T. M. Krygowski and M.
K. Cyrański, Chem. Rev., 2001, 101, 1385–1419.
25 The commonly used formal potential of the redox couple of
ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is −5.1 eV,
which is obtained on the basis of an approximation neglecting
solvent effects with a formal potential of −4.46 eV for the
normal hydrogen electrode (NHE) in the vacuum scale and an
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins