Journal of the American Chemical Society
Article
was focused on the entrance slit of a double monochromator and
measured by a PMT detector. For polarization dependent measure-
ments the pump beam was set to 45° by a λ/2 plate relative to the
horizontally oriented gate beam. The polarization of both beams was
purified by wire grids (Moxtek). In front of the cuvette, the pump
beam was finally adjusted to parallel, perpendicular and magic angle
relative to the gate beam with a wire grid for reasons already explained
in the section above. The analyses of the anisotropic fluorescence
upconversion data was done exactly as for the anisotropic transient
absorption data.
(23) Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. J. Mater. Chem.
2008, 18, 264.
(24) Yagi, S.; Nakazumi, H. Top. Heterocycl. Chem. 2008, 14, 133.
(25) Volkova, K. D.; Kovalska, V. B.; Tatarets, A. L.; Patsenker, L. D.;
Kryvorotenko, D. V.; Yarmoluk, S. M. Dyes Pigm. 2006, 72, 285.
(26) Tatarets, A. L.; Fedyunyayeva, I. A.; Dyubko, T. S.; Povrozin, Y.
A.; Doroshenko, A. O.; Terpetschnig, E. A.; Patsenker, L. D. Anal.
Chim. Acta 2006, 570, 214.
(27) Terpetschnig, E.; Szmacinski, H.; Ozinskas, A.; Lakowicz, J. R.
Anal. Biochem. 1994, 217, 197.
(28) Thomas, J.; Sherman, D. B.; Amiss, T. J.; Andaluz, S. A.; Pitner,
J. B. Bioconjugate Chem. 2007, 18, 1841.
(29) Renard, B.-L.; Aubert, Y.; Asseline, U. Tetrahedron Lett. 2009,
ASSOCIATED CONTENT
* Supporting Information
Synthetic protocols, eigenvalues and eigenvectors of exciton
coupling theory, raw data of time-resolved measurements. This
material is available free of charge via the Internet at http://
■
S
50, 1897.
(30) Gao, F.-P.; Lin, Y.-X.; Li, L.-L.; Liu, Y.; Mayerhoffer, U.; Spenst,
̈
P.; Su, J.-G.; Li, J.-Y.; Wurthner, F.; Wang, H. Biomaterials 2014, 35,
1004.
̈
(31) Terpetschnig, E.; Szmacinski, H.; Lakowicz, J. R. Anal. Chim.
Acta 1993, 282, 633.
(32) Arunkumar, E.; Fu, N.; Smith, B. D. Chem.Eur. J. 2006, 12,
4684.
(33) Gassensmith, J. J.; Arunkumar, E.; Barr, L.; Baumes, J. M.;
DiVittorio, K. M.; Johnson, J. R.; Noll, B. C.; Smith, B. D. J. Am. Chem.
Soc. 2007, 129, 15054.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(34) Xiang, Z.; Nesterov, E. E.; Skoch, J.; Lin, T.; Hyman, B. T.;
Swager, T. M.; Bacskai, B. J.; Reeves, S. A. J. Histochem. Cytochem.
2005, 53, 1511.
(35) Ros-Lis, J. V.; Martinez-Manez, R.; Sancenon, F.; Soto, J.;
Spieles, M.; Rurack, K. Chem.Eur. J. 2008, 14, 10101.
(36) Ros-Lis, J. V.; Martinez-Manez, R.; Soto, J. Chem. Commun.
2002, 2248.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the DFG for funding this work within the Research
Group FOR 1809.
REFERENCES
(37) Ajayaghosh, A.; Arunkumar, E.; Daub, J. Angew. Chem., Int. Ed.
2002, 41, 1766.
(38) Radaram, B.; Mako, T.; Levine, M. Dalton Trans. 2013, 42,
16276.
(39) Ananda Rao, B.; Kim, H.; Son, Y.-A. Sens. Actuators, B 2013,
■
(1) Stender, B.; Voelker, S. F.; Lambert, C.; Pflaum, J. Adv. Mater.
2013, 25, 2943.
(2) Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Science
2002, 295, 1506.
188, 847.
(3) Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y.
Angew. Chem., Int. Ed. 2014, 53, 2119.
(40) Scherer, D.; Dorfler, R.; Feldner, A.; Vogtmann, T.; Schwoerer,
̈
M.; Lawrentz, U.; Grahn, W.; Lambert, C. Chem. Phys. 2002, 279, 179.
(41) Odom, S. A.; Webster, S.; Padilha, L. A.; Peceli, D.; Hu, H.;
Nootz, G.; Chung, S. J.; Ohira, S.; Matichak, J. D.; Przhonska, O. V.;
Kachkovski, A. D.; Barlow, S.; Bredas, J. L.; Anderson, H. L.; Hagan, D.
J.; Van Stryland, E. W.; Marder, S. R. J. Am. Chem. Soc. 2009, 131,
7510.
(4) Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
(5) Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud’homme, R. K. Chem.
Mater. 2012, 24, 812.
(6) Mayerhoffer, U.; Fimmel, B.; Wurthner, F. Angew. Chem., Int. Ed.
̈
̈
2012, 51, 164.
(7) Heckmann, A.; Dummler, S.; Pauli, J.; Margraf, M.; Kohler, J.;
̈
̈
(42) Ohira, S.; Rudra, I.; Schmidt, K.; Barlow, S.; Chung, S.-J.; Zhang,
Stich, D.; Lambert, C.; Fischer, I.; Resch-Genger, U. J. Phys. Chem. C
Q.; Matichak, J.; Marder, S. R.; Bredas, J.-L. Chem.Eur. J. 2008, 14,
́
2009, 113, 20958.
11082.
(8) Volker, S. F.; Renz, M.; Kaupp, M.; Lambert, C. Chem.Eur. J.
̈
(43) Toro, C.; De Boni, L.; Yao, S.; Ritchie, J. P.; Masunov, A. E.;
Belfield, K. D.; Hernandez, F. E. J. Chem. Phys. 2009, 130, 214504/1.
(44) Webster, S.; Fu, J.; Padilha, L. A.; Przhonska, O. V.; Hagan, D.
J.; Van Stryland, E. W.; Bondar, M. V.; Slominsky, Y. L.; Kachkovski,
A. D. Chem. Phys. 2008, 348, 143.
(45) Webster, S.; Odom, S. A.; Padilha, L. A.; Przhonska, O. V.;
Peceli, D.; Hu, H.; Nootz, G.; Kachkovski, A. D.; Matichak, J.; Barlow,
S.; Anderson, H. L.; Marder, S. R.; Hagan, D. J.; Van Stryland, E. W. J.
Phys. Chem. B 2009, 113, 14854.
(46) Webster, S.; Peceli, D.; Hu, H.; Padilha, L. A.; Przhonska, O. V.;
Masunov, A. E.; Gerasov, A. O.; Kachkovski, A. D.; Slominsky, Y. L.;
Tolmachev, A. I.; Kurdyukov, V. V.; Viniychuk, O. O.; Barrasso, E.;
Lepkowicz, R.; Hagan, D. J.; Van Stryland, E. W. J. Phys. Chem. Lett.
2010, 1, 2354.
2011, 17, 14147.
(9) Muller, T. J. J.; Bunz, U. H. F. Functional Organic Materials:
̈
Syntheses, Strategies and Applications; Wiley-VCH: Weinheim, 2007.
(10) Volker, S. F.; Schmiedel, A.; Holzapfel, M.; Renziehausen, K.;
̈
Engel, V.; Lambert, C. J. Phys. Chem. C 2014, 118, 17467.
(11) Kuster, S.; Geiger, T. Dyes Pigm. 2015, 113, 110.
(12) Wurthner, F.; Kaiser, T. E.; Saha-Moeller, C. R. Angew. Chem.,
̈
Int. Ed. 2011, 50, 3376.
(13) Mobius, D. Adv. Mater. 1995, 7, 437.
̈
(14) Kobayashi, T. J-Aggregates; World Scientific: Singapore, 1996.
(15) Van Amerongen, H.; Valkunas, L.; Van Grondelle, R.
Photosynthetic Excitations; World Scientific: Singapore, 2000.
(16) Kirstein, S.; Daehne, S. Int. J. Photoenergy 2006, 2006, 1.
(17) Scheibe, G. Kolloid-Z. 1938, 82, 1.
(47) Belfield, K. D.; Bondar, M. V.; Haniff, H. S.; Mikhailov, I. A.;
Luchita, G.; Przhonska, O. V. ChemPhysChem 2013, 14, 3532.
(48) Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G.
A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640.
(18) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40,
5361.
(19) Czikkely, V.; Dreizler, G.; Foersterling, H. D.; Kuhn, H.;
Sondermann, J.; Tillmann, P.; Wiegand, J. Z. Naturforsch., A:
Astrophys., Phys. Phys. Chem. 1969, 24, 1821.
(20) Kiprianov, A. I. Russ. Chem. Rev. 1971, 40, 594.
(21) Ajayaghosh, A. Acc. Chem. Res. 2005, 38, 449.
(22) Beverina, L.; Salice, P. Eur. J. Org. Chem. 2010, 1207.
(49) Volker, S. F.; Uemura, S.; Limpinsel, M.; Mingebach, M.;
̈
Deibel, C.; Dyakonov, V.; Lambert, C. Macromol. Chem. Phys. 2010,
211, 1098.
(50) Merritt, V. Y.; Hovel, H. J. Appl. Phys. Lett. 1976, 29, 414.
3556
J. Am. Chem. Soc. 2015, 137, 3547−3557