3350 McCaffrey et al.
Macromolecules, Vol. 38, No. 8, 2005
Supporting Information Available: Summary of experi-
mental details. This material is available free of charge via
conformations comes from the TREPR spectra of the
main chain polymeric radical of PMMA measured at
close to 0 °C. These spectra are also very broad and
featureless. However, previous work from our laboratory
has shown that averaging multiple simulations without
hyperfine modulation does not reproduce the experi-
mental spectra.42 Future work will include combining
the two models and investigating other models (e.g.,
three- or four-site jump models) in order to produce
accurate simulations.
Finally, it is worthwhile to note that there is no
reason to expect PMMA and d3-PMMA to have exactly
the same conformational dynamics. There are many
reports in the literature of substantial isotope effects
on polymer physical properties. In particular, the works
of Bates et al.43 and Cukier et al.44 show that rotational
dynamics in polybutadienes and polyethylenes, respec-
tively, can show significant changes upon deuteration.
This can be simply due to the larger van der Waals radii
of the methyl groups in d3-PMMA, although there may
be more subtle stereoelectronic effects as well. The
samples used here were of similar chain length, and
although there was a slight difference in polydispersity
between the protonated and deuterated samples, we
have never observed differences in any of our spectra
that could be attributed solely to molecular weight
changes (down to about Mw ) 10K for PMMA). The
dynamic effects we observe are clearly long range, but
not long enough for molecular weight to play a large
role. Currently, we are attempting to address this issue
by selectively synthesizing known-chain length oligo-
mers of both polymers. This will be the subject of a
future publication.
References and Notes
(1) McCaffrey, V. P.; Forbes, M. D. E. Macromolecules 2005, 38,
3334.
(2) Harbron, E. J.; McCaffrey, V. P.; Xu, R.; Forbes, M. D. E. J.
Am. Chem. Soc. 2000, 122, 9182.
(3) Abraham, R. J.; Melville, H. W.; Ovenall, D. W.; Whiffen, D.
H. Trans. Faraday Soc. 1958, 54, 1133.
(4) Doetschman, D. C.; Mehlenbacher, R. C.; Cywar, D. Macro-
molecules 1996, 29, 1807.
(5) Kamachi, M.; Kohno, M.; Liaw, D. J.; Katsuki, S. Polym. J.
1978, 10, 69.
(6) Tian, Y.; Zhu, S.; Hamielec, A. E.; Fulton, D. B.; Eaton, D.
R. Polymer 1992, 33, 384.
(7) Sugiyama, Y. Bull. Chem. Soc. Jpn. 1998, 71, 1019.
(8) Harris, J. A.; Hinojosa, O.; Arthur, J. C. J. Polym. Sci., Polym.
Sci. Ed. 1973, 11, 3215.
(9) Ingram, D. J. E.; Symons, M. C. R.; Townsend, M. G. Trans.
Faraday Soc. 1958, 54.
(10) Iwasaki, M.; Sakai, Y. J. Polym. Sci., Part A-1 1969, 7, 1749.
(11) Spichty, M.; Giese, B.; Matsumoto, A.; Fischer, H.; Gescheidt,
G. Macromolecules 2001, 34, 723.
(12) Matsumoto, A.; Giese, B. Macromolecules 1996, 29, 3758.
(13) Hesse, C.; Roncin, J. Mol. Phys. 1970, 19, 803.
(14) Griller, D.; Ingold, K. U.; Krusic, P. J.; Fischer, H. J. Am.
Chem. Soc. 1978, 100, 6750.
(15) Beveridge, D. L.; Dobosh, P. A.; Pople, J. A. J. Chem. Phys.
1968, 48, 4802.
(16) Fessenden, R. W. J. Phys. Chem. 1967, 71, 74.
(17) Morokuma, K.; Pedersen, L.; Karplus, M. J. Chem. Phys.
1968, 48, 4801.
(18) Rhodes, C. J.; Walton, J. C.; Della, E. W. J. Chem. Soc., Perkin
Trans. 2 1993, 11, 2125.
(19) Iwasaki, M. S. J. Polym. Sci., Part A-1 1969, 7, 1537.
(20) Bendler, J. T.; Yaris, R. Macromolecules 1978, 11, 650.
(21) Inoue, Y.; Konno, T. Makromol. Chem. 1978, 179, 1311.
(22) Ono, K.; Sasaki, T.; Yamamoto, M.; Yamasaki, Y.; Ute, K.;
Hatada, K. Macromolecules 1995, 28, 5012.
(23) Bolton, J. R.; Carrington, A. Mol. Phys. 1962, 5, 161.
(24) Freed, J. H.; Fraenkel, G. K. J. Chem. Phys. 1963, 39, 326.
(25) Fraenkel, G. K. J. Phys. Chem. 1967, 71, 139.
(26) Sullivan, P. D.; Bolton, J. R. Adv. Magn. Reson. 1970, 4, 39.
(27) Bubnov, N. N.; Solodovnikov, S. P.; Prokof’ev, A. I.; Kabach-
nik, M. I. Russ. Chem. Rev. 1978, 47, 549.
(28) Heller, C.; McConnell, H. M. J. Chem. Phys. 1960, 32, 138.
(29) Carrington, A.; McLachlan, A. D. Introduction to Magnetic
Resonance; Harper & Row: New York, 1967.
(30) Paul, H. Chem. Phys. Lett. 1975, 32, 472.
(31) Tsay, F.-D.; Gupta, A. J. Polym. Sci., Part B 1987, 25, 855.
(32) Sasaki, T.; Nawa, K.; Yamamoto, M.; Nishijima, Y. Eur.
Polym. J. 1989, 25, 79.
(33) Bullock, A. T.; Cameron, G. G.; Krajewski, V. J. Phys. Chem.
1976, 80, 1792.
(34) North, A. M. Chem. Soc. Rev. 1972, 1, 49.
(35) Spyros, A.; Dais, P.; Heatley, F. Macromolecules 1994, 27,
6207.
(36) Fytas, G.; Meier, G.; Patkowski, A.; Dorfmu¨ller, T. Colloid
Polym. Sci. 1982, 260, 949-.
(37) Kulik, A. S.; Beckham, H. W.; Schmide-Rohr, K.; Radloff, D.;
Pawelzik, U.; Boeffel, C.; Spiess, H. W. Macromolecules 1994,
27, 4746.
(38) Schmidt-Rohr, K.; Kulid, A. S.; Beckham, H. W.; Ohlemacher,
A.; Pawlzid, U.; Boeffel, C.; Spiess, H. W. Macromolecules
1994, 27, 4733.
(39) Saski, T.; Arisawa, H.; Yamamoto, M. Macromolecules 1991,
23, 103.
Summary and Outlook
Simulations of the temperature dependence of the
TREPR spectra for PEA and d3-PMMA radicals using
a two-site jump model for hyperfine modulation have
returned reasonable values for the activation param-
eters for conformational motion in these polymers. The
numbers compare favorably with values determined by
NMR and SSEPR methods. For PMMA and PEMA our
model was not successful. While the line positions and
general line width features could be reproduced, the
relative intensities of the transitions were not. It is clear
that the simulations of the TREPR spectra shown for
the photolysis of PMMA and PEMA do not accurately
reflect the experimental data.
Future work to determine whether the position of the
cleavage site along the polymer chain has an effect on
the rotational correlation time will include photolysis
of low molecular weight and oligomeric PMMA. The
TREPR spectra of these systems will be compared to
those of the large molecular weight polymer. If the
spectra of the low molecular weight and oligomeric
PMMA are sharp and easily simulated, then differences
in the rotation correlation times on either side of the
chain will have to be incorporated into the simulation
program.
(40) Kuebler, S. C.; Schaefer, D. J.; Boeffel, C.; Pawelzik, U.;
Spiess, H. W. Macromolecules 1997, 30, 6597.
(41) McCaffrey, V. P.; Harbron, E. J.; Forbes, M. D. E., submitted
to J. Phys. Chem. B.
(42) Harbron, E. J. Ph.D. Thesis, University of North Carolina
at Chapel Hill, Chapel Hill, NC, 1999.
(43) Bates, F. S.; Keith, H. D.; McWhan, D. B. Macromolecules
1987, 20, 3065.
(44) Cukier, R.; Natarajan, K.; Samulski, E. T. Nature (London)
1978, 275, 527.
Experimental Section
A complete description of the TREPR apparatus, polymer
synthesis, and sample descriptions is given in our previous
papers,1,2 and a summary is provided as Supporting Informa-
tion to this paper.
Acknowledgment. We thank the Rohm and Haas
Co. for polymer samples and the National Science
Foundation for their continued strong support of our
program (Grant CHE-0213516).
MA047801X