Journal of the American Chemical Society
COMMUNICATION
’
ASSOCIATED CONTENT
Supporting Information.
S
Full experimental details,
b
NMR spectra, and in situ IR kinetics data. This material is
available free of charge via the Internet at http://pubs.acs.org.
’
AUTHOR INFORMATION
Corresponding Author
’
ACKNOWLEDGMENT
The authors acknowledge receipt of NIH grant GM57014
(
including GM57014-13S2) in support of this work. R.D.B.
acknowledges receipt of a U.S. DOE GAANN Fellowship
P200A060119). We are especially grateful to Profs. Anne J.
(
McNeil and Melanie S. Sanford and their research groups for
helpful discussions. J.M. thanks the faculty of the Institute of
Chemical Research of Catalonia (ICIQ) for hospitality during a
sabbatical stay.
Figure 2. Experiments tracking silane depletion, with monitoring of
À1
silane IR stretch at 2100 cm . (a, top left) Et
3
SiH (1.0 equiv) at À25
(1.0 equiv) and PCy (2.0 equiv).
b, top right) Et SiH (1.0 equiv) and hydrocinnamaldehyde (1.0
°
(
C, then a mixture of Ni(COD)
2
3
3
equiv) at À25 °C, then a mixture of Ni(COD) (1.0 equiv) and PCy
’ REFERENCES
2
3
(
(
2.0 equiv). (c, bottom left) Et
3
SiH (1.0 equiv) and phenyl propyne
(1.0 equiv) and
(1) (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b)
1.0 equiv) at À25 °C, then a mixture of Ni(COD)
2
Montgomery, J.; Sormunen, G. J. Top. Curr. Chem. 2007, 279, 1.(c)
Malik, H. A.; Baxter, R. D.; Montgomery, J. “. In Catalysis Without
Precious Metals; Bullock, R. M., Ed.; Wiley-VCH: Weinheim, Germany,
PCy (2.0 equiv). (d, bottom right) Et SiH (1.0 equiv) and ynal 8 (1.0
3
3
equiv) at À25 °C, then a mixture of Ni(COD)
2 3
(1.0 equiv) and PCy
(
2.0 equiv).
2010; p 181. (d) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem.
Commun. 2007, 4441. (e) Ikeda, S. Angew. Chem. Int. Ed. 2003, 42, 5120.
For related processes with other metals, see:(f) Skukcas, E.; Ngai, M.-Y.;
Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394. (g)
Jeganmohan, M.; Cheng, C. H. Chem. Eur. J. 2008, 14, 10876. (h)
Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur. J.
Org. Chem. 2010, 391.
1
4
by in situ IR analysis (Figure 2b). Similary, injection of 1.0
equiv of the same catalyst to a solution of phenyl propyne and
Et SiH at À25 °C resulted in no silane depletion (Figure 2c).
3
However, adding 1.0 equiv of the same catalyst to a solution of
ynal 8 and Et SiH at À25 °C led to productive formation of
3
(2) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997,
product 9 with steady depletion of silane (Figure 2d).
119, 9065. (b) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999,
121, 6098. (c) Huang, W. S.; Chan, J.; Jamison, T. F. Org. Lett. 2000,
2, 4221. (d) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc.
2004, 126, 3698. (e) Yang, Y.; Zhu, S. F.; Zhou, C. Y.; Zhou, Q. L. J. Am.
These experiments, coupled with the rate analysis and lack of
silane kinetic isotope effect, are consistent with the metallacycle
mechanism (Scheme 1) and provide strong evidence against
mechanisms that involve addition of a Ni(0) species to silane
Scheme 2). Additionally, kinetically viable mechanisms that
involve catalyst modification via the conversion of Ni(0) to a
reactive Ni(II) hydride upon reaction initiation would involve
rapid silane consumption at the level of nickel catalyst loading.
However, rapid silane consumption does not precede the begin-
ning of ynal consumption or product formation. The interme-
diacy of metallacycle 1 followed by rapid reaction with Et SiH, is
Chem. Soc. 2008, 130, 14052.
(
(3) Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. Chem. Commun.
2
008, 1347.
(4) McCarren, P. R.; Liu, P.; Cheong, P. H.-Y.; Jamison, T. F.; Houk,
K. N. J. Am. Chem. Soc. 2009, 131, 6654.
(5) (a) Miller, K. M.; Jamison, T. F. J. Am. Chem. Soc. 2004,
15
126, 15342. (b) Moslin, R. A.; Miller, K. M.; Jamison, T. F. Tetrahedron
2
006, 62, 7598. (c) Malik, H. A.; Sormunen, G. J.; Montgomery, J. J. Am.
3
Chem. Soc. 2010, 132, 6304.
6) (a) Chaulagain, M. R.; Mahandru, G. M.; Montgomery, J.
consistent with these observations. Metallacycle 1 is likely
formed by oxidative cyclization of a Ni(0)Àynal complex
(
16
Tetrahedron 2006, 62, 7560. (b) Buchan, Z. A.; Bader, S. J.; Montgom-
ery, J. Angew. Chem. Int. Ed. 2009, 48, 4840.
following slow or reversible complexation of substrate.
In summary, the kinetic behavior of a nickel-catalyzed silane-
mediated reductive cyclization of ynals has been evaluated. This
report represents the first such study across the many classes of
related nickel-catalyzed reductive couplings that have been
reported. The rate studies are consistent with a mechanism
involving rate-determining oxidative cyclization to a metallacyc-
lic intermediate, followed by rapid silane-mediated conversion to
the protected allylic alcohol product. A number of mechanisms
involving oxidative addition of silane to nickel can be ruled out on
the basis of this analysis. Future work will be directed toward fully
elucidating the nature of the steps that follow the rate-determin-
ing oxidative cyclization, as well as evaluating the generality of
these results in intermolecular couplings and with other ligand
systems.
(
7) (a) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1989,
1
11, 6478. (b) Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.;
Takagi, K.; Mori, M. J. Am. Chem. Soc. 1994, 116, 9771. (c) Sato, Y.;
Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (d) For a
recent demonstration, see:Zell, T.; Schaub, T.; Radacki, K.; Radius, U.
Dalton Trans. 2011, 40, 1852.
(
8) Hydrosilylation of ynals with Rh hydrosilylation catalysts pro-
vides the opposite regiochemistry for silane addition, producing alke-
nylsilane products. See:Ojima, I.; Tzamarioudaki, M.; Tsai, C. Y. J. Am.
Chem. Soc. 1994, 116, 3643.
(
9) In addition to the possibilities described in the text, alteration of
the precatalyst oxidation state during reaction initiation would provide
additional available mechanistic pathways. For example, the Ni(II)-
catalyzed hydrosilylation of carbonyl compounds proceeds by nickel
hydride generation by σ-bond metathesis of silane with a nickel
5
730
dx.doi.org/10.1021/ja200867d |J. Am. Chem. Soc. 2011, 133, 5728–5731