Inorganic Chemistry
Communication
(3) (a) Bi, M. H.; Li, G. H.; Hua, J.; Liu, X. M.; Hu, Y. W.; Shi, Z.; Feng,
S. H. CrystEngComm 2007, 9, 984−986. (b) Braga, D.; Maini, L.;
Mazzeo, P. P.; Ventura, B. Chem. - Eur. J. 2010, 16, 1553−1559.
(c) Kang, Y.; Wang, F.; Zhang, J.; Bu, X. J. Am. Chem. Soc. 2012, 134,
17881−17884. (d) Kang, Y.; Fang, W.; Zhang, L.; Zhang, J. Chem.
Commun. 2015, 51, 8994−8997.
The photocatalytic activities of 1 were evaluated for MB
photodegradation under visible-light illumination. The charac-
teristic absorption of MB at about 665 nm was selected for
monitoring the adsorption and photocatalytic degradation
process. The photocatalytic activity of 1 was gradually enhanced
with time increasing from 0 to 25 min, which demonstrated that
1 has a much higher activity (Figure 4). After 25 min, MB in the
solution almost disappeared when using 1 as the photocatalyst.
Moreover, 1 is stable under repeated application with a nearly
These results show that 1 is an excellent photocatalyst under
visible light.
In summary, we report an interpenetrated 3D copper−iodine
cluster-based framework, based on two kinds of Cu4I4 subunits
(SBUs), a cubane and an eight-membered ring. It exhibits 2-fold-
interpenetrated dia topology and is templated by an enantiopure
porphyrin-like CuI(5-eatz)2 unit. Furthermore, this zeolitic
framework exhibits outstanding photocatalytic activity under
visible light.
(4) Blatov, V. A. Struct. Chem. 2012, 23, 955−963.
(6) (a) Chan, H.; Chen, Y.; Dai, M.; Lu, C.-N.; Wang, H.-F.; Ren, Z.-
̈
G.; Huang, Z.-J.; Ni, C.-Y.; Lang, J.-P. CrystEngComm 2012, 14, 466−
473. (b) Cheng, J.-K.; Chen, Y.-B.; Wu, L.; Zhang, J.; Wen, Y.-H.; Li, Z.-
J.; Yao, Y.-G. Inorg. Chem. 2005, 44, 3386−3388. (c) DeBord, J. R. D.;
Lu, Y.-J.; Warren, C. J.; Haushalter, R. C.; Zubieta, J. Chem. Commun.
1997, 15, 1365−1366. (d) Healy, P. C.; Kildea, J. D.; White, A. H. J.
Chem. Soc., Dalton Trans. 1988, 6, 1637−1639.
(7) Tsunekawa, S.; Fukuda, T.; Kasuya, A. J. Appl. Phys. 2000, 87,
1318−1321.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, TGA diagram, and PXRD (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is supported by the National Basic Research Program
of China (973 Program 2012CB821705), NSFC (Grants
21573236, 21425102, and 21221001), and Chunmiao Project
of Haixi Institute of Chinese Academy of Sciences (Grant
CMZX-2015-001).
REFERENCES
■
(1) (a) Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis: Synthesis
Reactions and Applications; Wiley: Weinheim, Germany, 2010. (b) Li, Y.;
Yu, J. H. Chem. Rev. 2014, 114, 7268−7316. (c) Schmidt, J. E.; Xie, D.;
Rea, T.; Davis, M. E. Chem. Sci. 2015, 6, 1728−1734. (d) Lin, H. Y.;
Chin, C. Y.; Huang, H. L.; Huang, W. Y.; Sie, M. J.; Huang, L. H.; Lee, Y.
H.; Lin, C. H.; Lii, K. H.; Bu, X.; Wang, S. L. Science 2013, 339, 811−813.
(e) Liu, T.-F.; Feng, D.; Chen, Y.-P.; Zou, L.; Bosch, M.; Yuan, S.; Wei,
Z.; Fordham, S.; Wang, K.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137,
413−419. (f) Feng, D.; Wang, K.; Su, J.; Liu, T.-F.; Park, J.; Wei, Z.;
Bosch, M.; Yakovenko, A.; Zou, X.; Zhou, H.-C. Angew. Chem., Int. Ed.
2015, 54, 149−154.
(2) (a) Sun, J.; Bonneau, C.; Cantin, A.; Corma, A.; Diaz-Cabanas, M.
̃
J.; Moliner, M.; Zhang, D.; Li, M.; Zou, X. Nature 2009, 458, 1154−
1157. (b) Zheng, N.; Bu, X.; Feng, P. Nature 2003, 426, 428−432.
(c) Wu, T.; Wang, X.; Bu, X.; Zhao, X.; Wang, L.; Feng, P. Angew. Chem.,
Int. Ed. 2009, 48, 7204−7207. (d) Xiong, W.-W.; Athresh, E. U.; Ng, Y.
N.; Ding, J.; Wu, T.; Zhang, Q. J. Am. Chem. Soc. 2013, 135, 1256−1259.
(e) Lin, J.; Dong, Y.; Zhang, Q.; Hu, D.; Li, N.; Wang, L.; Liu, Y.; Wu, T.
Angew. Chem., Int. Ed. 2015, 54, 5103−5107. (f) Lin, Q.; Bu, X.; Mao, C.;
Zhao, X.; Sasan, K.; Feng, P. J. Am. Chem. Soc. 2015, 137, 6184−6187.
C
Inorg. Chem. XXXX, XXX, XXX−XXX