Journal of Materials Chemistry C
Page 8 of 10
DOI: 10.1039/C4TC02107J
‡ These authors contributed equally.
ITO/PEDOT:PSS (40 nm)/active layer (~90 nm)/with or w/o PFN
(5 nm)/Al (100 nm). The ITO glass substrates were
unltrasonicated sequentially in deionized water, acetone, toluene
and isopropanol. Immediately prior to device fabrication, the
substrates were treated by oxygen plasma for 4 min. Firstly,
60
65
70
75
1
2
3
4
5
6
H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y.
Wu and G. Li, Nat. Photon., 2009, 3, 649.
L. Bian, E. Zhu, J. Tang, W. Tang and F. Zhang, Prog. Polym. Sci.,
2012, 37, 1292.
S. Günes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107,
1324.
G. Dennler, M. C. Scharbe and C. J. Brabec, Adv. Mater., 2009, 21,
1323.
P. M. Beaujuge and J. M. J. Fréchet, J. Am. Chem. Soc., 2011, 133,
20009.
(a) W. Tang, L. Ke, L. Tan, T. Lin, T. Kietzke and Z.ꢀK. Chen,
Macromolecules, 2007, 40, 6164; (b) E. Zhu, J. Hai, Z. Wang, B.
Ni, Y. Jiang, L. Bian, F. Zhang and W. Tang, J. Phys. Chem. C,
2013, 117, 24700.
5
poly(3,4ꢀethylenedioxythiophene)/poly(styrene
sulfonate)
(PEDOT/PSS, H. C. Starck) thin film (40 nm) was spinꢀcoated
and then baked at 50oC for 15 min. Secondly, the
polymer:PC71BM (1:1, 1:2, weight ratio) blend active layer, with
10 a nominal thickness of ~90 nm, was spinꢀcoated on top of the
PEDOT/PSS from a solvent of chloroform (CF) or mixed solvent
of chlorobenzene/1,8ꢀdiiodoctane (DIO) (95:5 vol%) (10 mg/mL)
at 1000 rpm for 2 min. Thirdly, for the insertion of PFN, the PFN
material was dissolved in methanol under the presence of small
15 amount of acetic acid and its solution was spinꢀcoated on the top
of the obtained active layer to form a thin interlayer of 5 nm. For
methanol treatment, after drying of the active layer under
vacuum, methanol solvent exposure was carried out by spinꢀ
coating methanol on the top of active layers at 2000 rpm for 30 s.
20 For treatment of THF annealing, the devices before PFN/Al
deposition were transferred to a glass Petri dish containing THF
solvent and covered with a glass cap. After solvent annealing, the
samples were dried overnight (>12 h) at room temperature in a
N2ꢀfilled glovebox. Al electrode (100 nm) was evaporated
25 through a shadow mask to define the active area of the devices
(2×8 mm2). The currentꢀvoltage (JꢀV) characteristics and PCE
were measured with a Keithley 2400 sourcemeter under 1 sun,
AM 1.5G spectrum from a solar simulator (Oriel model 91192) at
room temperature in a nitrogen filled glovebox. Solar simulator
30 illumination intensity was determined using a monocrystal silicon
reference cell (HamamatsuS1133, with KGꢀ5 visible color filter)
calibrated by the National Renewable Energy Laboratory
(NREL).
7
8
9
L. Dou, J. Gao, E. Richard, J. You, C.ꢀC. Chen, K. C. Cha, Y. He, G.
Li and Y. Yang, J. Am. Chem. Soc., 2012, 134, 10071.
Y. Li, Z. Pan, L. Miao, Y. Xing, C. Lia, and Y. Chen, Polym. Chem.,
2014, 5, 330.
Z. He, C. Zhong, X. Huang, W.ꢀY. Wong, H. Wu, L. Chen, S. Su and
Y. Cao, Adv. Mater., 2011, 23, 4636.
80 10 C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.ꢀW. Tsang, T.ꢀH. Lai,
J. R. Reynold and F. So, Nat. Photon., 2012, 6, 115.
11 X. Li, W.C.H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo,
Y. Li, J. Hou, J. You and Y. Yang, Adv. Mater., 2012, 24, 3046.
12 Z. He, C. Zhong, S. Su, X. Miao, H. Wu and Y. Cao, Nat. Photon.,
85
90
2012, 6, 593.
13 F. Huang, K.ꢀS. Chen, H.ꢀL. Yip, S. K. Hau, O. Acton, Y. Zhang, J.
Luo, A. K.ꢀY. Jen, J. Am. Chem. Soc., 2009, 131, 13886.
14 P. Shen, H. Bin, L. Xiao and Y. Li, Macromolecules, 2013, 46, 9575.
15 L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int.
Ed., 2011, 50, 9697.
16 M. Zhang, Y. Gu, X. Guo, F. Liu, S. Zhang, L. Huo, T. P. Russell
and J. Hou Adv. Mater., 2013, 25, 4944.
17 T.ꢀY. Chu, J. Lu, Y. Zhang, J.ꢀR. Pouliot, J. Zhou, A. Najari, M.
Leclerc, Y. Tao, Adv. Funct. Mater., 2012, 22, 2345.
95 18 D. Gendron, P.ꢀO. Morin, P. Berrouard, N. Allard, C. N. Garon, Y.
Tao and M. Leclerc, Macromolecules, 2011, 44, 7188.
19 X. Guo, N. Zhou, S. J. Lou, J. W. Hennek, R. P. Ortiz, M. R. Butler,
P.ꢀL. T. Boudreault, J. Strzalka, P.ꢀO. Morin, M. Leclerc, J.T. López
Navarrete, M. A. Ratner, L. X. Chen and R. P. H. Chang, A.
Facchetti and T. J. Marks, J. Am. Chem. Soc., 2012, 134, 18427.
20 E. Zhu, B. Ni, B. Zhao, J. Hai, L. Bian, H. Wu and W. Tang,
Macromol. Chem. Phys., 2014, 215, 227.
21 P. Shen, H. Bin, Y. Zhang and Y. Li, Polym. Chem., 2014, 5, 567.
22 Y. Wang, Y. Liu, S. Chen, R. Peng and Z. Ge, Chem. Mater., 2013,
25, 3196.
100
Acknowledgements
35 This work is supported by the National Natural Science
Foundation of China (Grant No. 21074055), Program for New
Century Excellent Talents in University (NCETꢀ12ꢀ0633), The
Jiangsu Province Natural Science Fund for Distinguished Young
Scholars (BK20130032), Doctoral Fund of Ministry of Education
40 of China (No. 20103219120008), and the Fundamental Research
Funds for the Central Universities (30920130111006).
105
23 Y. Dong, X. Hu, C. Duan, P. Liu, S. Liu, L. Lan, D. Chen, L. Ying,
S. Su, X. Gong, F. Huang and Y. Cao, Adv. Mater., 2013, 25, 3683.
24 T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and
X. Gong, Energy. Environ. Sci. 2012, 5, 8208.
110 25 M. Wang, X. Hu, P. Liu, F. Huang and Y. Cao, J. Am. Chem. Soc.,
2011, 133, 9638.
26 J. Min, Z. Zhang, S. Zhang, X. Li, X. Gong, F. Huang and Y. Cao,
Chem. Mater., 2012, 24, 3247.
27 K. Li, Z. Li, K. Feng, X. Xu, L. Wang and Q. Peng, J. Am. Chem.
Notes and references
115
Soc., 2013, 135,13549.
28 E. Zhu, G. Ge, J. Shu, M. Yi, L. Bian, J. Hai, J. Yu, Y. Liu, J. Zhou
and W. Tang, J. Mater. Chem. A, 2014, 2, 13580.
29 Q. Shi, H. Fan, Y. Liu, W. Hu, Y. Li and X. Zhan, Macromolecules,
2011, 44, 9173.
a Key Laboratory of Soft Chemistry and Functional Materials (Ministry of
Education of China), Nanjing University of Science and Technology,
45 Nanjing 210094, China. Fax: +86 25 8431 7311; Tel: +86 25 8431 7311;
Eꢀmail: whtang@mail.njust.edu.cn
120 30 J.ꢀH. Kim, C. E. Song, H. U. Kim, A. C. Grimsdale, SꢀJ. Moon, W.
S. Shin, S. K. Choi, D.ꢀH. Hwang, Chem. Mater., 2013, 25, 2722.
31 S. Subramaniyan, H. Xin, F. S. Kim, N. M. Murari, B. A. E.
Courtright and S. A. Jenekhe, Macromolecules, 2014,
dx.doi.org/10.1021/ma500250j.
b Institute of Polymer Optoelectronic Materials and Devices, State Key
Laboratory of Luminescent Materials and Devices, South China
University of Technology, Guangzhou, 510640, China. Eꢀmail:
c Key Laboratory of Luminescence and Optical Information (Ministry of
Education), Beijing Jiaotong University, Beijing 100044, China
d Key Laboratory of Preparation and Applications of Environmental
Friendly Materials (Ministry of Education of China), Jilin Normal
55 University, Siping 136000, China
125 32 J. Hai, W. Yu, E. Zhu, L. Bian, J. Zhang and W. Tang, Thin Solid
Films, 2014, 562, 75.
33 J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee and K. Cho. J. Phys.
Chem. C, 2009, 113, 17579.
34 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv.
Funct. Mater., 2007, 17, 1636.
35 I. Marina, K. Yoshiko, S. Akinori, I. Yuta, O. Hideo, I. Shinzaburo
and S. Shu, J. Phys. Chem. C, 2013, 117, 26859.
130
† Electronic Supplementary Information (ESI) available: Synthesis of
accepting monomers, NMR spectra and devices data for cells processed
using CF. See DOI: 10.1039/b000000x/
8
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]