Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Table 1. Scope of the photocatalytic reduction of azidesa
DOI: 10.1002/9780470682517.ch16, pp. 469D-4O9I:01.0.1039/D0CC04118A
3. S. Ahammed, A. Saha and B. C. Ranu, J. Org. Chem., 2011, 76,
7235-7239.
4. N. Arai, N. Onodera and T. Ohkuma, Tetrahedron Lett., 2016, 57,
4183-4186.
5. A. K. Rathi, M. B. Gawande, V. Ranc, J. Pechousek, M. Petr, K.
Cepe, R. S. Varma and R. Zboril, Cat. Sci. Tech., 2016, 6, 152-160.
6. Y. Chen, L. X. Yang, X. Zhang, S. Q. Deng, L. You and Y. Liu, Chem.
Select, 2018, 3, 96-99.
7. J. G. Du, G. Xu, H. K. Lin, G. W. Wang, M. L. Tao and W. Q.
Zhang, Green Chem., 2016, 18, 2726-2735.
8. Y. P. Wu, B. Yang, J. Tian, S. B. Yu, H. Wang, D. W. Zhang, Y. Liu
and Z. T. Li, Chem. Comm., 2017, 53, 13367-13370.
9. N. Chandna, F. Kaur, S. Kumar and N. Jain, Green Chem., 2017,
19, 4268-4271.
Entry
Substrate
Product
Yieldc
92%
66%
88%
97%
81%
56%
Conversionb
>99%
82%
1
2
3
4
5
6
91%
>99%
>99%
71%
10. D. E. Falvey and A. D. Gudmundsdottir, Nitrenes and nitrenium
ions, Wiley, Hoboken, New Jersey, 2013.
11. M. S. Platz, in Reactive Intermediate Chemistry, eds. M. Jones,
Jr., R. A. Moss, M. Platz and M. Jones, Wiley-Interscience, Hoboken,
N.J., 2004, ch. 11, pp. 501-560.
12. Y.-P. Wu, B. Yang, J. Tian, S.-B. Yu, H. Wang, D.-W. Zhang, Y. Liu
and Z.-T. Li, Chem. Commun., 2017, 53, 13367-13370.
13. Y.-P. Wu, M. Yan, Z.-Z. Gao, J.-L. Hou, H. Wang, D.-W. Zhang, J.
Zhang and Z.-T. Li, Chin. Chem. Lett., 2019, 30, 1383-1386.
14. B. Zelenay, M. Besora, Z. Monasterio, D. Ventura-Espinosa, A. J.
P. White, F. Maseras and S. Diez-Gonzalez, Cat. Sci. Tech., 2018, 8,
5763-5773.
7
8
9
--
0%
70%
(100%)
91%
84%
81%
(100%)
52%
(100%)
10
64%
11
12
13
14
79%
54%
80%
72%
15. Z. Zhang, Z. Li, B. Fu and Z. Zhang, Chem. Comm., 2015, 51,
16312-16315.
16. A. Elhage, A. E. Lanterna and J. C. Scaiano, ACS Catal., 2017, 7,
250-255.
17. B. Wang, K. Duke, J. C. Scaiano and A. E. Lanterna, J. Catal.,
2019, 379, 33-38.
18. A. Elhage, A. E. Lanterna and J. C. Scaiano, Chem. Sci., 2019, 10,
1419-1425.
98%
(100%)
>99%
>99%
75%
19. A. Hainer, N. Marina, S. Rincon, P. Costa, A. E. Lanterna and J. C.
Scaiano, J. Am. Chem. Soc., 2019, 141, 4531-4535.
20. A. S. Hainer, J. S. Hodgins, V. Sandre, M. Vallieres, A. E. Lanterna
and J. C. Scaiano, ACS Ener. Lett., 2018, 3, 542-545.
21. A. Elhage, A. E. Lanterna and J. C. Scaiano, ACS Sust. Chem. Eng.,
2018, 6, 1717-1722.
22. M. Jonsson, in Visible-Light-Active Photocatalysis:
Nanostructured Catalyst Design, Mechanisms, and Applications, ed.
S. Ghosh, Wiley-VCH, Weinhem, 2018.
23. S. Singha, M. Sahoo and K. M. Parida, Dalton Trans., 2011, 40,
7130-7132.
24. A. Gevorgyan, S. Mkrtchyan, T. Grigoryan and V. O. Iaroshenko,
ChemPlusChem, 2018, 83, 375-382.
25. A. K. Ghosh, A. Sarkar and M. Brindisi, Org. Biomol. Chem.,
2018, 16, 2006-2027.
26. D. V. Korchagin, A. V. Akimov, E. A. Yureva, S. M. Aldoshin and E.
Y. Misochko, Chem. Phys. Lett., 2016, 659, 234-236.
27. N. P. Gritsan, D. Tigelaar and M. S. Platz, J. Phys. Chem. A, 1999,
103, 4465-4469.
42%
15
82%
35%
48%
72%
--
16
17
18
19
20
79%
99%
>99%
31%
CH3(CH2)6CH2N3 CH3(CH2)6CH2NH2
28%
89%
>99%
[a] Reaction conditions: 0.2 mmol organic azide, 8 mg of Pd@TiO2, 2 ml of H2O, Ar
atmosphere, UVA irradiation (368 nm LED working at 0.06 W/cm2), 5 h.
Conversions were estimated by GC-MS. [c]Purification was performed by flash
column chromatography and the products characterized by MS, 1H and 13C NMR.
Values between brackets correspond to the selectivity towards reduction of azide
group.
[b]
28. Y. Y. Chen, A. S. Kamlet, J. B. Steinman and D. R. Liu, Nature
Chem., 2011, 3, 146-153.
29. J. L. He, K. Yamaguchi and N. Mizuno, J. Org. Chem., 2011, 76,
4606-4610.
30. L. Martinez-Sarti and S. Diez-Gonzalez, ChemCatChem, 2013, 5,
1722-1724.
References
1. S. Pothukanuri and N. Winssinger, Org. Lett., 2007, 9, 2223-
2225.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins