Organic Letters
ORCID
Letter
2014, 50, 936−938. (g) Zhang, L.; Li, Z.; Liu, Z.-Q. Org. Lett. 2014, 16,
3
(
3
688−3691.
Notes
7) (a) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1991,
2, 7525−7528. (b) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron
Lett. 1992, 33, 1291−1294.
The authors declare no competing financial interest.
(
1
8) (a) Jin, L.-K.; Lu, G.-P.; Cai, C. Org. Chem. Front. 2016, 3, 1309−
313. (b) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res.
2
(
016, 49, 2295−2306.
ACKNOWLEDGMENTS
■
9) (a) Prakash, G. K.; Ganesh, S. K.; Jones, J. P.; Kulkarni, A.;
Support by the Guangzhou Education Bureau University
Scientific Research Project (201831845), the Talent Fund for
High-Level University Construction of Guangzhou
B185006009007), the National Natural Science Foundation
of China (No. U1601227 to X.-Y.Y.), and the Science and
Technology Programs of Guangdong Province (No.
Masood, K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51,
12090−12094. (b) Li, J.; Wan, W.; Ma, G.; Chen, Y.; Hu, Q.; Kang, K.;
Jiang, H.; Hao, J. Eur. J. Org. Chem. 2016, 2016, 4916−4921.
(10) (a) Jutand, A. Chem. Rev. 2008, 108, 2300−2347. (b) Yoshida, J.-
i.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265−
(
2
2
3
1
299. (c) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492−
521. (d) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2,
02−308. (e) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28,
867−1872. (f) Sambiagio, C.; Sterckx, H.; Maes, B. U. W. ACS Cent.
2
015B020225006 to X.-Y.Y.) is gratefully acknowledged.
REFERENCES
Sci. 2017, 3, 686−688. (g) Sauermann, N.; Meyer, T. H.; Ackermann, L.
Chem. - Eur. J. 2018, 24, 16209−16217. (h) Sauermann, N.; Meyer, T.
H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8, 7086−7103. (i) Tang,
■
(
1) (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470−
77. (b) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity,
Applications; Wiley-VCH: Weinheim, Germany, 2004. (c) Muller, K.;
Faeh, C.; Diederich, F. Science 2007, 317, 1881−1886. (d) Ojima, I.
Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-VCH:
Chichester, UK, 2009.
2) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320−330.
3) (a) Besset, T.; Poisson, T.; Pannecoucke, X. Chem. - Eur. J. 2014,
0, 16830−16845. (b) Barata-Vallejo, S.; Lantano, B.; Postigo, A.
4
S.; Liu, Y.; Lei, A. Chem. 2018, 4, 27−45. (j) Waldvogel, S. R.; Mohle,
̈
̈
S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A. Angew. Chem., Int.
Ed. 2018, 57, 6018−6041. (k) Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J.
Chem. 2018, 36, 338−352.
(
11) O’Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P.
(
S.; Blackmond, D. G. Angew. Chem., Int. Ed. 2014, 53, 11868−11871.
12) Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front.
018, 5, 2573−2577.
13) (a) Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am.
(
2
(
(
2
Chem. - Eur. J. 2014, 20, 16806−16829. (c) Belhomme, M.-C.; Poisson,
T.; Pannecoucke, X. J. Org. Chem. 2014, 79, 7205−7211. (d) Chu, L.;
Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513−1522. (e) Egami, H.;
Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294−8308. (f) Wang, J.;
Chem. Soc. 2017, 139, 18452−18455. (b) Mei, R.; Koeller, J.;
Ackermann, L. Chem. Commun. 2018, 54, 12879−12882. (c) Mei, R.;
Sauermann, N.; Oliveira, J. C. A.; Ackermann, L. J. Am. Chem. Soc. 2018,
140, 7913−7921. (d) Meyer, T. H.; Oliveira, J. C. A.; Sau, S. C.; Ang, N.
San
Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432−
506. (g) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Acena, J. L.; Izawa, K.;
Liu, H.; Soloshonok, V. A. J. Fluorine Chem. 2014, 167, 37−54.
chez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.;
́ ́
̃
W. J.; Ackermann, L. ACS Catal. 2018, 8, 9140−9147. (e) Qiu, Y.;
Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.;
Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5828−5832. (f) Qiu, Y.;
Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew.
Chem., Int. Ed. 2018, 57, 14179−14183. (g) Qiu, Y.; Struwe, J.; Meyer,
T. H.; Oliveira, J. C. A.; Ackermann, L. Chem. - Eur. J. 2018, 24, 12784−
2
(
6
7
h) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650−
82. (i) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683−
30. (j) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765−825. (k) Xu,
1
2789. (h) Qiu, Y.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L.
X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731−764.
Angew. Chem., Int. Ed. 2018, 57, 5818−5822. (i) Sauermann, N.; Mei,
(
8
1
(
(
l) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115,
R.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090−5094.
26−870. (m) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163−
(j) Sauermann, N.; Meyer, T. H.; Ackermann, L. Chem. - Eur. J. 2018,
185. (n) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028−1047.
2
4, 16209−16217. (k) Tian, C.; Massignan, L.; Meyer, T. H.;
Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383−2387.
l) Zhang, S.-K.; Samanta, R. C.; Sauermann, N.; Ackermann, L.
o) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413−2423.
p) Sauer, G. S.; Lin, S. ACS Catal. 2018, 8, 5175−5187. (q) Xu, P.; Li,
(
W.; Xie, J.; Zhu, C. Acc. Chem. Res. 2018, 51, 484−495.
(
4) (a) Bergman, J. Adv. Heterocycl. Chem. 2015, 117, 1−81. (b) Ye,
N.; Chen, H.; Wold, E. A.; Shi, P.-Y.; Zhou, J. ACS Infect. Dis. 2016, 2,
82−392. (c) Gupta, A. K.; Bharadwaj, M.; Kumar, A.; Mehrotra, R.
Top. Curr. Chem. 2017, 375, 3.
5) (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996,
(
14) (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60,
626−1631. (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529−2591.
c) Ruan, Z.; Zhang, S.-K.; Zhu, C.; Ruth, P. N.; Stalke, D.; Ackermann,
3
1
(
(
L. Angew. Chem., Int. Ed. 2017, 56, 2045−2049. (d) Zell, D.; Dhawa, U.;
Mueller, V.; Bursch, M.; Grimme, S.; Ackermann, L. ACS Catal. 2017,
5
2
2
2, 15031−15070. (b) Kadnikov, D. V.; Larock, R. C. J. Org. Chem.
004, 69, 6772−6780. (c) Koh Park, K.; Young Jung, J. Heterocycles
005, 65, 2095−2105. (d) Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan,
7
, 4209−4213. (e) Lv, W. X.; Li, Q.; Li, J. L.; Li, Z.; Lin, E.; Tan, D. H.;
Cai, Y. H.; Fan, W. X.; Wang, H. Angew. Chem., Int. Ed. 2018, 57,
J.-W.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Lett. 2014, 16, 204−207.
1
6544−16548. (f) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem.
(
(
e) Wang, Y.; Lu, H.; Xu, P.-F. Acc. Chem. Res. 2015, 48, 1832−1844.
f) Sakamoto, R.; Kashiwagi, H.; Selvakumar, S.; Moteki, S. A.;
Maruoka, K. Org. Biomol. Chem. 2016, 14, 6417−6421. (g) Cao, Z.-Y.;
Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 51, 1443−1454. (h) Chen, W.-
T.; Wei, W.-T. Asian J. Org. Chem. 2018, 7, 1429−1438.
(
(
16) Tommasino, J.-B.; Brondex, A.; Medebielle, M.; Thomalla, M.;
́
Langlois, B. R.; Billard, T. Synlett 2002, 1697−1699.
(
6) (a) Liu, J.; Zhuang, S.; Gui, Q.; Chen, X.; Yang, Z.; Tan, Z. Eur. J.
Org. Chem. 2014, 2014, 3196−3202. (b) Lu, Q.; Liu, C.; Peng, P.; Liu,
Z.; Fu, L.; Huang, J.; Lei, A. Asian J. Org. Chem. 2014, 3, 273−276.
(c) Shi, L.; Yang, X.; Wang, Y.; Yang, H.; Fu, H. Adv. Synth. Catal. 2014,
3
56, 1021−1028. (d) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Org.
Lett. 2014, 16, 4594−4597. (e) Wei, W.; Wen, J.; Yang, D.; Liu, X.;
Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225−4230.
(f) Yang, F.; Klumphu, P.; Liang, Y.-M.; Lipshutz, B. H. Chem. Commun.
D
Org. Lett. XXXX, XXX, XXX−XXX