M. Zabet-Moghaddam et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4629–4632
4631
quantitative analysis of peptides and proteins with high accuracy.
As with other reagents we reported earlier that specifically modify
cysteine residues, we did not observe any isotope effects. Although
a decrease in the ionization efficiencies as a result of blocking the
amino groups may be anticipated, we did not observe a decrease in
ionization efficiencies in the model peptides or the commercial
protein reported here. While addition of hydroxylamine for
removal of excessive reactions with hydroxyl groups is required
for these modifiers, they do not require the existence of particular
amino acid residues and are thus expected to be applicable to
quantitative analysis of a wider variety of proteins. These modifiers
are prepared relatively inexpensively from readily available
sources. We are developing additional kinds of amino-group
modifiers and the results will be reported in due course.
Acknowledgments
This work is supported by the Texas Tech University-Texas Tech
University Health Sciences Center Joint Initiative Grant. We also
thank the Center for Biotechnology and Genomics, Texas Tech
University for allowing us to use the research facilities.
References and notes
1. For example (a) Gouw, J. W.; Tops, B. B. J.; Mortensen, P.; Heck, A. J. R.;
Krijgsveld, J. Anal. Chem. 2008, 80, 7796; (b) Colzani, M.; Schutz, F.; Potts, A.;
Waridel, P.; Quadroni, M. Mol. Cell. Proteomics 2008, 7, 927; (c) Hebeler, R.;
Oeljeklaus, S.; Reidegeld, K. A.; Eisenacher, M.; Stephan, C.; Sitek, B.; Stuehler,
K.; Meyer, H. E.; Sturre, M. J. G.; Dijkwel, P. P.; Warscheid, B. Mol. Cell.
Proteomics 2008, 7, 108; (d) Hathout, Y.; Flippin, J.; Fan, C.; Liu, P.; Csaky, K. J.
Proteome Res. 2005, 4, 620; (e) Ong, S.-E.; Blagoev, B.; Kratchmarova, I.;
Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Mol. Cell. Proteomics 2002, 1,
376; (f) Myint, K. T.; Aoshima, K.; Tanaka, S.; Nakamura, T.; Oda, Y. Anal. Chem.
2009, 81, 1121; (g) Gouw, J. W.; Krijgsveld, J.; Heck, A. J. R. Mol. Cell. Proteomics
2010, 9, 11; (h) Collier, T. S.; Sarkar, P.; Franck, W. L.; Rao, B. M.; Dean, R. A.;
Muddiman, D. C. Anal. Chem. 2010, 82, 8696; (i) Jehmlich, N.; Fetzer, I.; Seifert,
J.; Mattow, J.; Vogt, C.; Harms, H.; Thiede, B.; Richnow, H.-H.; von Bergen, M.;
Schmidt, F. Mol. Cell. Proteomics 2010, 9, 1221.
2. (a) Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Anal. Chem. 2001,
73, 2836; (b) Mirgorodskaya, O. A.; Kozmin, Y. P.; Titov, M. I.; Körner, R.;
Sönksen, C. P.; Roepstorff, P. Rapid Commun. Mass Spectrom. 2000, 14, 1226; (c)
Sakai, J.; Kojima, S.; Yanagi, K.; Kanaoka, M. Proteomics 2005, 5, 16.
3. For example, (a) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.;
Aebersold, R. Nat. Biotechnol. 1999, 17, 994; (b) Ross, P. L.; Huang, Y. N.;
Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.;
Dey, S.; Daniel, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He,
F.; Jacobson, A.; Pappin, D. J. Mol. Cell. Proteomics 2004, 3, 1154; (c) Xia, B.;
Feasley, C. L.; Sachdev, G. P.; Smith, D. F.; Cummings, R. D. Anal. Biochem. 2009,
387, 162; (d) Xiang, F.; Ye, H.; Chen, R.; Fu, Q.; Li, L. Anal. Chem. 2010, 82, 2817;
(e) Thompson, A.; Schafer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.;
Neumann, T.; Hamon, C. Anal. Chem. 2003, 75, 1895; (f) Storme, M. L.; van
Bocxlaer, J. F. Handbook on Mass Spectrometry 2009, 113; (g) Zhou, H.; Ranish, J.
A.; Watts, J. D.; Aebersold, R. Nat. Biotechnol. 2002, 19, 512; (h) Goshe, M. B.;
Conrads, T. P.; Panisko, E. A.; Angell, N. H.; Veenstra, T. D.; Smith, R. D. Anal.
Chem. 2001, 73, 2578; (i) Qiu, Y.; Sousa, E. A.; Hewick, R. M.; Wang, J. H. Anal.
Chem. 2002, 74, 4969.
Figure 2. Quantitative analysis of two model peptides. (a) Quantitative analysis of
angiotensin I. (b) Quantitative analysis of ACTH 18-39.
4. Niwayama, S.; Kurono, S.; Matsumoto, H. Bioorg. Med. Chem. Lett. 2001, 11,
2257.
5. Niwayama, S.; Kurono, S.; Matsumoto, H. Bioorg. Med. Chem. Lett. 2003, 13,
2913.
6. Niwayama, S.; Kurono, S.; Cho, H.; Matsumoto, H. Bioorg. Med. Chem. Lett. 2006,
16, 5054.
7. Kurono, S.; Kurono, T.; Komori, N.; Niwayama, S.; Matsumoto, H. Bioorg. Med.
Chem. 2006, 14, 8197.
8. Zabet-Moghaddam, M.; Kawamura, T.; Yatagai, E.; Niwayama, S. Bioorg. Med.
Chem. Lett. 2008, 18, 4891.
9. Niwayama, S.; Zabet-Moghaddam, M.; Kurono, S.; Cho, H. Bioorg. Med. Chem.
Lett. 2009, 19, 5698.
10. Münchbach, M.; Quadroni, M.; Miotto, G.; James, P. Anal. Chem. 2000, 72, 4047.
11. (a) Tsumoto, H.; Murata, C.; Miyata, N.; Taguchi, R.; Kohda, K. Chem. Pharm.
Bull. 2003, 51, 1399; (b) Tsumoto, H.; Ra, M.; Samejma, K.; Taguchi, R.; Kohda,
K. Rapid Commun. Mass Spectrom. 2008, 22, 965; (c) Tsumoto, H.; Murata, C.;
Miyata, N.; Kohda, K.; Taguchi, R. Rapid Commun. Mass Spectrom. 2007, 21,
3815; (d) Schmidt, A.; Kellermann, J.; Lottspeich, F. Proteomics 2005, 5, 4.
12. Zhao, Y.-Y.; Cai, L.-S.; Jing, Z.-Z.; Wang, H.; Yu, J.-X.; Zhang, H.-S. J. Chromatogr. A
2003, 1021, 175.
Figure 3. Quantitative analysis of bovine serum albumin (BSA).
In summary, we synthesized benzoyloxysuccinimide and its
deuterated version, which react with amino groups in peptides,
and demonstrated that the combination of these reagents enables
13. Synthesis of the benzoyloxysuccinimide (BSI), 2, is as follows: benzoic acid
(0.353 g, 2.89 mmol) was dissolved in 50 mL of dry THF, and N-