R.R. Zaky, T.A. Yousef / Journal of Molecular Structure 1002 (2011) 76–85
85
Table 8
Antimicrobial and antimycotic activities in terms of MIC (mg/ml) after 48 h.
[7] M.E. Khalifa, Anal. Fr. 23 (1995) 453.
[8] A.A. Shoukry, M.M. Shoukry, Spectrochim. Acta Part A 70 (2008) 686.
[9] T. Madrakian, A. Afkhami, A. Mousavi, Talanta 71 (2007) 610.
[10] A.I. Vogel, Quantitative Inorganic Analysis, Longmans, London, 1989.
[11] HyperChem version 8.0 Hypercube, Inc.
[12] I. Stylianakis, A. Kolocouris, N. Kolocouris, G. Fytas, G.B. Foscolos, E. Padalko, J.
Neyts, D. Clerq, Bioorg. Med. Chem. Lett. 13 (2003) 1699.
[13] K.M. Ibrahium, T.H. Rakaha, A.M. Abdalla, M.M. Hassanian, J. Ind. Chem. 32
(1993) 361.
[14] S.H. Guzar, J.I.N. Qin-han, J. Appl. Sci. 8 (2008) 2480.
[15] K.K. Narang, V.P. Singh, Trans. Metal Chem. 21 (1996) 507.
[16] K. Nakamoto, Infrared Spectra of Inorganic, Coordination Compounds, Wiley
Interscience, New York, 1970.
Compound
E. coli
C. albicans
H2L
3000
1500
750
3000
750
187.5
375
–
3000
3000
375
1500
1500
3.75
–
[Co(H2L)(OAc)2]ꢁ2H2O
[Ni(H2L)(OAc)2]ꢁH2O
[Cu(HL)2(H2O)2]
[Cu(HL)(OAc)]
[Cu(H2L)Cl2]ꢁH2O
Gentamycin
Colitrimazole
5.85
´
´
[17] K. Pyta, P. Przybylski, A. Huczynski, A. Hoser, K. Wozniak, W. Schilf, B.
Kamien´ ski, D. Eugeniusz Grech, J. Mol. Struct. 970 (2010) 147.
[18] M.M. Bekheit, Y.A. Elewady, F.I. Taha, S.I. Mostafa, Bull. Soc. Chim. Fr. 128
(1990) 178.
activity against E. coli and C. albicans. It is noteworthy that the
observed antimicrobial activity was highly dependent on the metal
complex, in which copper complex played an important role in
achieving an excellent level of biological activity. It is observed
from these studies that most of the metal chelates have a higher
activity than the free ligand. Such increased activity of the metal
chelates can be explained on the basis of Overtone’s concept and
chelation theory [48]. According to Overtone’s concept of cell per-
meability the lipid membrane that surrounds the cell favours the
passage of only lipid soluble materials due to which liposolubility
is an important factor that controls antimicrobial activity. On
chelation, the polarity of the metal ion is reduced to a greater
extent due to the overlap of the ligand orbital and partial sharing
of the positive charge of the metal ion with donor groups. Further,
it increases the delocalization of p-electrons over the whole chelate
ring and enhances the lipophilicity of the complex. This increased
lipophilicity enhances the penetration of the complexes into lipid
membranes and blocking of metal binding sites on the enzymes
of the microorganism. It was observed from the Table 8, complexes
demonstrated the lowest potent antimicrobial activity.
[19] G.A.A. Al-Hazmi, M.S. El-Shahawi, I.M. Gabr, A.A. El-Asmy, J. Coord. Chem. 58
(2005) 713.
[20] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.
[21] L. Sacconi, Trans. Metal Chem. 4 (1979) 199.
[22] G. Speier, J. Csihony, A.M. Whalen, C.G. Pie-pont, Inorg. Chem. 35 (1996)
3519.
[23] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143.
[24] J.L. Mesa, J.L. Pizarro, M.I. Arriortua, Cryst. Res. Technol. 33 (1998) 3.
[25] V.T. Kasumo, Spectrochim. Acta A 57 (2001) 1649.
[26] J.A. Wellman, F.B. Hulsbergen, J. Inorg. Nucl. Chem. 40 (1978) 143.
[27] R.K. Ray, G.R. Kauffman, Inorg. Chem. Acta 173 (1990) 207.
[28] K. Jayasubramanian, S.A. Samath, S. Thambidurai, R. Murugesan, S.K.
Ramalingam, Trans. Metal Chem. 20 (1995) 76.
[29] V.S.X. Anthonisamy, R. Murugesan, Chem. Phys. Lett. 287 (1998) 353.
[30] V.S.X. Anthonisamy, R. Anantharam, R. Murugesan, Spectrochim. Acta A 55
(1999) 135.
[31] N. Raman, Y.P. Raja, A. Kulandaisamy, Proc. Ind. Acad. Sci. (Chem. Sci.) 113 (3)
(2001) 183.
[32] R.P. John, Spectrochim. Acta A 59 (2003) 1349.
[33] D.U. Warad, C.D. Statish, V.H. Kulkarni, C.S. Bajgur, Ind. J. Chem. 39 (2000) 415.
[34] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68.
[35] H.H. Horowitz, G. Metzger, Anal. Chem. 35 (1963) 1464.
[36] A. Broido, J. Ploym. Sci. A – 2 7 (1969) 1761.
[37] A.A. Frost, R.G. Pearson, Kinetics and Mechanisms, Wiley, New-York, 1961.
[38] T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to
Polymer Science, John Wiley and Sons, Chichester, 1994.
[39] P.B. Maravalli, T.R. Goudar, Thermochim. Acta 325 (1999) 35.
[40] K.K.M. Yusuff, R. Sreekala, Thermochim. Acta 159 (1990) 357.
[41] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414 (2004) 105.
[42] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917 (2009)
sb:pages>63.
[43] O.A. El-Gammal, Spectrochim. Acta 75 (A) (2010) 533.
[44] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, O.E. Piro, E.E. Castellano, H.
Beraldo, J. Mol. Struct. 920 (2009) 97.
[45] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, F. Sives, O.E. Piro, E.E.
Castellano, H. Beraldo, Polyhedron 28 (2009) 3797.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] Ü.Ö. Özmen, G. Olgun, Spectrochim. Acta Part A 70 (2009) 641.
[2] P.G. Avaji, C.H.V. Kumar, S.A. Patil, K.N. Shivananda, C. Nagaraju, Eur. J. Med.
Chem. 44 (2009) 3552.
[46] P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolken, in: G.L. Wood, J.A.
Washington (Eds.), Manual of Clinical Microbiology, Am. Soc. Microbiol.,
Washington, DC, 1995.
[3] Y. Zang, L. Zang, L. Liu, J. Guo, D. Wu, G. Xu, X. Wang, D. Jia, Inorg. Chim. Acta
363 (2010) 289.
[4] L.M. Lima, F.S. Frattani, J.L. dos Santos, H.C. Castro, C.A.M. Fraga, R.B. Zingali, E.J.
Barreiro, Eur. J. Med. Chem. 43 (2008) 348.
[5] H.S. Seleem, G.A. El-Inany, M. Mousa, F.I. Hanafy, Spectrochim. Acta Part A 74
(2009) 869.
[47] R.N. Jones, A.L. Barry, T.L. Gavan, I.I.J.A. Washington, in: E.H. Lennette, A.
Ballows, W.J. Hausler Jr., H.J. Shadomy (Eds.), Manual of Clinical Microbiology,
Am. Soc. Microbiol., fourth ed., Washington, DC, 1985, p. 972.
[48] N. Raman, V. Muthuraj, S. Ravichandran, A. Kulandaisamy, Proc. Ind. Acad. Sci.
161 (2003) 115.
[6] V.P. Singh, Spectrochim. Acta Part A 71 (2008) 17.