ChemComm
Communication
R1 = 0. 0374, wR2 = 0.0929 (all data), for 511 parameters. CCDC number
956914. Synthesis of 3. To a CH2Cl2 (50 ml) solution of 2 (0.05 g,
0.06 mmol) was added a few drops of HBF4. The mixture was stirred at
room temperature for 20 min without any noticeable change. Volatiles
were removed under reduced pressure and the resulting deep red oily
solid washed with a small portion of Et2O to remove excess acid. The
remaining solid was dissolved in a minimum amount of CH2Cl2 which
was then layered with hexanes. Slow mixing of the solutions afforded
3 (0.04 g, 73%) as a dry red solid. IR n(CO)(CH2Cl2) 2058s, 2040s,
2002s cmꢀ1 1H NMR (CDCl3) d 8.11–7.33 (m, 20H, Ph), 4.74 (s, 2H,
.
CH), 4.68 (s, 2H, CH), 4.49 (s, 2H, CH), 4.32 (s, 2H, CH), 2.86
(br, 2H, CH2), 2.74 (m, 2H, CH2), 2.48 (br, 2H, CH2), ꢀ12.40 (t, J 17.6,
1H, m-H). 31P{1H} NMR (CD2Cl2) 44.8 (s) ppm.
1 M. W. W. Adams and E. I. Stiefel, Science, 1998, 282, 1842–1843;
R. Cammack, Nature, 1999, 397, 214–215; M. Frey, ChemBioChem,
2002, 3, 153–160.
2 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, Science,
1998, 282, 1853–1858; Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian
and J. C. Fontecillacamps, Structure, 1999, 7, 13–23.
Fig. 4 CVs of 2 in the absence of pyridine and in the presence of varying
molar equivalents of pyridine under a H2 atmosphere (1 mM solution in
MeCN, supporting electrolyte [NBu4][PF6], scan rate 0.1 V sꢀ1, glassy
carbon electrode, potential vs. Fc+/Fc).
3 A. Volbeda, M. H. Charon, C. Piras, C. E. Hatchikian, M. Frey and
J. C. Fontecillacamps, Nature, 1995, 373, 580–587.
4 S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-
Klaucke, E. Warkentin, R. K. Thauer and U. Ermler, Science, 2008,
321, 572–575; S. Shima, E. J. Lyon, R. K. Thauer, B. Mienert and
E. Bill, J. Am. Chem. Soc., 2005, 127, 10430–10435.
5 C. Tard and C. J. Pickett, Chem. Rev., 2009, 109, 2245–2274.
6 For some reviews of this area see: I. P. Georgakaki, L. M. Thomson,
E. J. Lyon, M. B. Hall and M. Y. Darensbourg, Coord. Chem. Rev., 2003,
238–239, 255–266; D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003,
32, 268–287; T. B. Rauchfuss, Inorg. Chem., 2004, 43, 14–26; L. Sun,
B. Åkermark and S. Ott, Coord. Chem. Rev., 2005, 249, 1653–1663;
X. Liu, S. K. Ibrahim, C. Tard and C. J. Pickett, Coord. Chem. Rev.,
2005, 249, 1641–1652; J.-F. Capon, F. Gloaguen, P. Schollhammer and
J. Talarmin, Coord. Chem. Rev., 2005, 249, 1664–1676.
7 C. Greco, M. Bruschi, L. D. Gioia and U. Ryde, Inorg. Chem., 2007, 46,
5911–5921; C. Greco, M. Bruschi, P. Fantucci, U. Ryde and L. De Gioia,
J. Am. Chem. Soc., 2011, 133, 18742–18749; S. Trohalaki and R. Pachter,
Int. J. Hydrogen Energy, 2010, 35, 5318–5331.
8 S. Dey, A. Rana, S. G. Day and A. Dey, ACS Catal., 2013, 3, 429–436.
9 N. Wang, M. Wang, L. Chen and L. Sun, Dalton Trans., 2013, 42,
12059–12071.
10 X.-F. Liu and B.-S. Yin, J. Coord. Chem., 2010, 63, 4061–4067.
11 F. I. Adam, G. Hogarth, S. E. Kabir and I. Richards, C. R. Chim., 2008,
11, 890–905; F. I. Adam, G. Hogarth and I. Richards, J. Organomet.
Chem., 2007, 692, 3957–3968.
12 S. Ghosh, G. Hogarth, N. Hollingsworth, K. B. Holt, I. Richard, M. G.
Richmond, B. Sanchez and D. Unwin, Dalton Trans., 2013, 42, 6775–6792;
F. Ridley, S. Ghosh, G. Hogarth, N. Hollingsworth, K. B. Holt and D. Unwin,
J. Electroanal. Chem., 2013, 703, 14–22; G. Hogarth, S. E. Kabir and
I. Richards, Organometallics, 2010, 29, 6559–6568; L.-C. Song, C.-G.
Li, J.-H. Ge, Z.-Y. Yang, H.-T. Wang, J. Zhang and Q.-M. Hu, J. Inorg. Biochem.,
under H2 results in an increase of the oxidative peak current of the
second oxidation process of 2 by 10 mA, which reaches 22 mA upon
addition of 10 equivalents of pyridine. No such catalytic wave was
observed when the same experiment was carried out in absence of
base (Fig. S5, ESI†) or H2 (Fig. S6, ESI†). Similarly Fe2(CO)4(m-
Ph2PCH2PPh2)(m-pdt)11 does not show catalytic waves under the
same conditions even when ferrocene is added. At this stage we do
not have a clear view of the likely mechanism operating. It has been
proposed18 and examined theoretically19 that A2+ heterolytically
cleaves H2 to afford a terminal hydride and nitrogen-bound proton.
This clearly cannot occur in the case of 2 and thus we tentatively
propose the intermediate formation of a cationic dihydride.
In summary we have shown that a biomimetic of the diiron
hydrogenase can catalyse both the reduction of protons and H2
oxidation. We are currently developing a range of related bio-
mimetics containing different secondary redox-active centres20
and using density functional theory calculations in order to
more fully understand the electronic structure of 22+ and the
nature of the H2 oxidation process.
We are grateful to the Commonwealth Scholarship Commis-
sion for the award of a Commonwealth Scholarship to S.G. and
the EPSRC for a postdoctoral fellowship to N.H.
¨
2008, 102, 1973–1979; W. Gao, J. Ekstrom, J. Liu, C. Chen, L. Eriksson,
Notes and references
L. Weng, B. Åkermark and L. Sun, Inorg. Chem., 2007, 46, 1981–1991.
‡ Synthesis of 2. A mixture of 1 (0.10 g, 0.26 mmol) and dppf (0.14 g, 13 D. L. DuBois, C. W. Eigenbrot, J. A. Miedaner, J. C. Smart and
0.26 mmol) in toluene (100 ml) was heated at reflux for 5 d resulting in
a colour change from orange to red-brown. After cooling to room tempera-
ture, volatiles were removed under reduced pressure to give a dark oily red
residue. This was washed with hexanes (3 ꢂ 5 ml) and dried. Extraction into
a minimum volume of dichloromethane followed by addition of hexanes
and rotary evaporation gave 2 as a dry red solid (0.12 g, 52%). 2 can also be
R. C. Haltiwanger, Organometallics, 1986, 5, 1405–1411; B. D. Swartz
and C. Nataro, Organometallics, 2005, 24, 2447–2451; C. Nataro,
A. N. Campbell, M. A. Ferguson, C. D. Incarvito and A. L. Rheingold,
J. Organomet. Chem., 2003, 673, 47–55; G. Pilloni, B. Longato and
B. Corain, J. Organomet. Chem., 1991, 420, 57–65; B. Corain,
B. Longato and G. Favero, Inorg. Chim. Acta, 1989, 157, 259–266.
prepared upon heating a mixture of {Fe2(CO)5(m-pdt)}2(m,k1,k1-dppf)10 and 14 G. A. N. Felton, R. S. Glass, D. L. Lichtenberger and D. H. Evans,
dppf in toluene over a similar period. IR n(CO)(CH2Cl2) 1986s, 1949vs, 1918s
Inorg. Chem., 2006, 45, 9181–9184.
1896w cmꢀ1. 1H NMR (CDCl3) d 8.01 (t, J 8.2, 2H, Ph), 7.67–6.99 (m, 18H, 15 A. Jablonskyte, J. A. Wright, S. A. Fairhurst, J. N. T. Peck,
´
Ph), 4.93 (brs, 2H, CH), 4.46 (s, 2H, CH), 4.44 (s, 2H, CH), 4.01 (s, 2H,
CH), 2.60 (br, 2H, CH2), 2.31 (m, 2H, CH2), 2.13 (br, 2H, CH2).
S. K. Ibrahim, V. S. Oganesyan and C. J. Pickett, J. Am. Chem. Soc.,
2011, 133, 18606–18609.
31P{1H}NMR (CDCl3) 51.3 (s) ppm. Elemental analysis calc. for Fe3S2- 16 J. C. Gordon and G. J. Kubas, Organometallics, 2010, 29, 4682–4701;
P2O4C41H35ꢁ0.5CH2Cl2 (found): C 54.16 (53.41), H 3.81 (3.75). X-ray data
C. Greco, G. Zampella, L. Bertini, M. Bruschi, P. Fantucci and
L. De Gioia, Inorg. Chem., 2007, 46, 108–116; C. Greco and L. D.
Gioia, Inorg. Chem., 2011, 50, 6987–6995.
for Fe3S2P2O4C41H35ꢁ0.5CH2Cl2: red block, dimensions 0.38 ꢂ 0.32 ꢂ
%
0.16 mm, triclinic, space group P1, a = 9.7365(19), b = 13.149(3), c =
16.654(3) Å, a = 99.609(3), b = 94.376(3), g = 111.343(3)1, V = 1936.1(7) Å3, 17 J. M. Camara and T. B. Rauchfuss, J. Am. Chem. Soc., 2011, 133, 8098–8101.
Z = 2, F(000) 944, dcalc. = 1.588 g cmꢀ3, m = 1.411 mmꢀ1. 16800 reflections 18 J. M. Camara and T. B. Rauchfuss, Nat. Chem., 2012, 4, 26–30.
were collected, 8886 unique [R(int) = 0.0333] of which 8134 were observed 19 C. Greco, Inorg. Chem., 2013, 52, 1901–1908.
[I > 2.0s(I)]. At convergence, R1 = 0.0345, wR2 = 0.0911 [I > 2.0s(I)] and 20 O. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42, 1440–1459.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 945--947 | 947