Inorganic Chemistry
Article
(63) Reetz, M. T.; Li, X. Asymmetric Hydrogenation of Quinolines
Catalyzed by Iridium Complexes of BINOL-Derived Diphosphonites.
Chem. Commun. 2006, 52 (20), 2159−2160.
Catalyzed N-Formylation of Amines. Angew. Chem., Int. Ed. 2015,
54 (41), 12116−12120.
(80) Zhao, T.-X.; Zhai, G.-W.; Liang, J.; Li, P.; Hu, X.-B.; Wu, Y.-T.
Catalyst-Free N-Formylation of Amines Using BH NH and CO
2
(64) Lu, S. M.; Wang, Y. Q.; Han, X. W.; Zhou, Y. G. Asymmetric
Hydrogenation of Quinolines and Isoquinolines Activated by
Chloroformates. Angew. Chem., Int. Ed. 2006, 45 (14), 2260−2263.
(65) Zhou, H.; Li, Z.; Wang, Z.; Wang, T.; Xu, L.; He, Y.; Fan, Q.
H.; Pan, J.; Gu, L.; Chan, A. S. C. Hydrogenation of Quinolines Using
a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst:
Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid.
Angew. Chem., Int. Ed. 2008, 47 (44), 8464−8467.
3
3
under Mild Conditions. Chem. Commun. 2017, 53 (57), 8046−8049.
(81) Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N.
N. Carbon Nanotube-Gold Nanohybrid Catalyzed N-Formylation of
Amines by Using Aqueous Formaldehyde. ChemCatChem 2014, 6
(8), 2201−2205.
(82) Hulla, M.; Bobbink, F. D.; Das, S.; Dyson, P. J. Carbon Dioxide
Based N-Formylation of Amines Catalyzed by Fluoride and
Hydroxide Anions. ChemCatChem 2016, 8 (21), 3338−3342.
(83) Zheng, D.; Zhou, X.; Cui, B.; Han, W.; Wan, N.; Chen, Y.
Biocatalytic α-Oxidation of Cyclic Amines and N-Methylanilines for
the Synthesis of Lactams and Formamides. ChemCatChem 2017, 9
(6), 937−940.
(84) Rahman, S.; Fukamiya, N.; Okano, M.; Tagahara, K.; Lee, K.-H.
NII-Electronic Library Service. Chem. Pharm. Bull. 1997, 45 (9),
1527−1529.
(66) Li, Z. W.; Wang, T. L.; He, Y. M.; Wang, Z. J.; Fan, Q. H.; Pan,
J.; Xu, L. J. Air-Stable and Phosphine-Free Iridium Catalysts for
Highly Enantioselective Hydrogenation of Quinoline Derivatives. Org.
Lett. 2008, 10 (22), 5265−5268.
(67) Xu, L.; Lam, K. H.; Ji, J.; Wu, J.; Fan, Q.-H.; Lo, W.-H.; Chan,
A. S. C. Air-Stable Ir-(P-Phos) Complex for Highly Enantioselective
Hydrogenation of Quinolines and Their Immobilization in Poly-
(Ethylene Glycol) Dimethyl Ether (DMPEG). Chem. Commun. 2005,
1390−1392.
(68) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. I.
Homogeneous Catalytic System for Reversible Dehydrogenation-
Hydrogenation Reactions of Nitrogen Heterocycles with Reversible
Interconversion of Catalytic Species. J. Am. Chem. Soc. 2009, 131
(24), 8410−8412.
(69) Crabtree, R. H. Multifunctional Ligands in Transition Metal
Catalysis. New J. Chem. 2011, 35 (1), 18−23.
(70) Rakowski DuBois, M.; DuBois, D. L. The Roles of the First and
Second Coordination Spheres in the Design of Molecular Catalysts
for H 2 Production and Oxidation. Chem. Soc. Rev. 2009, 38 (1), 62−
72.
(71) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N.
Secondary Coordination Sphere Interactions Facilitate the Insertion.
J. Am. Chem. Soc. 2011, 133 (24), 9274−9277.
(72) Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J. Long-Range
Metal−ligand Bifunctional Catalysis: Cyclometallated Iridium Cata-
lysts for the Mild and Rapid Dehydrogenation of Formic Acid. Chem.
Sci. 2013, 4 (3), 1234.
(85) Chen, F.; Sahoo, B.; Kreyenschulte, C.; Lund, H.; Zeng, M.;
He, L.; Junge, K.; Beller, M. Selective Cobalt Nanoparticles for
Catalytic Transfer Hydrogenation of N-Heteroarenes. Chem. Sci.
2017, 8 (9), 6239−6246.
(86) Tao, L.; Zhang, Q.; Li, S. S.; Liu, X.; Liu, Y. M.; Cao, Y.
Heterogeneous Gold-Catalyzed Selective Reductive Transformation
of Quinolines with Formic Acid. Adv. Synth. Catal. 2015, 357 (4),
753−760.
́
(87) Vilhanova, B.; van Bokhoven, J. A.; Ranocchiari, M. Gold
Particles Supported on Amino-Functionalized Silica Catalyze Transfer
Hydrogenation of N-Heterocyclic Compounds. Adv. Synth. Catal.
2017, 359 (4), 677−686.
(88) Zhang, J. F.; Zhong, R.; Zhou, Q.; Hong, X.; Huang, S.; Cui, H.
Z.; Hou, X. F. Recyclable Silica-Supported Iridium Catalysts for
Selective Reductive Transformation of Quinolines with Formic Acid
in Water. ChemCatChem 2017, 9 (13), 2496−2505.
(89) Saari, W. S.; Halczenko, W.; Freedman, M. B.; Arison, B. H.
Synthesis and Reactions of Some Dihydro and Tetrahydro-4H-
Imidazo[5,4,l-Ij]Quinoline Derivatives. J. Heterocycl. Chem. 1982, 19,
837−840.
(73) Turkmen, H.; Kani, I.; Çetinkaya, B. Transfer Hydrogenation of
̈
(90) Shugrue, C. R.; Miller, S. J. Phosphothreonine as a Catalytic
Residue in Peptide-Mediated Asymmetric Transfer Hydrogenations of
8-Aminoquinolines. Angew. Chem., Int. Ed. 2015, 54 (38), 11173−
11176.
(91) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.-I. J. Am.
Chem. Soc. 2009, 131, 8410−8412.
(92) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Acceptorless
Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium
Catalyst. Angew. Chem., Int. Ed. 2013, 52 (27), 6983−6987.
Aryl Ketones with Half-Sandwich Ru II Complexes That Contain
Chelating Diamines. Eur. J. Inorg. Chem. 2012, 2012, 4494−4499.
(74) Gupta, K.; Tyagi, D.; Dwivedi, A. D.; Mobin, S. M.; Singh, S. K.
Catalytic Transformation of Bio-Derived Furans to Valuable
Ketoacids and Diketones by Water-Soluble Ruthenium Catalysts.
Green Chem. 2015, 17 (9), 4618−4627.
́
́
(75) Carrion, M. C.; Jalon, F. A.; Manzano, B. R.; Rodríguez, A. M.;
́
Sepulveda, F.; Maestro, M. (Arene)Ruthenium(II) Complexes
Containing Substituted Bis(Pyrazolyl)Methane Ligands - Catalytic
Behaviour in Transfer Hydrogenation of Ketones. Eur. J. Inorg. Chem.
2007, 2007 (25), 3961−3973.
́
(93) Carrion, M. C.; Ruiz-Castaneda, M.; Espino, G.; Aliende, C.;
̃
́
́
Santos, L.; Rodríguez, A. M.; Manzano, B. R.; Jalon, F. A.; Lledos, A.
Selective Catalytic Deuterium Labeling of Alcohols during a Transfer
Hydrogenation Process of Ketones Using D 2 O as the Only
Deuterium Source. Theoretical and Experimental Demonstration of a
Ru−H/D + Exchange as the Key Step. ACS Catal. 2014, 4 (4), 1040−
1053.
́
́
́
(76) Carrion, M. C.; Sepulveda, F.; Jalon, F. A.; Manzano, B. R.;
Rodríguez, A. M. Base-Free Transfer Hydrogenation of Ketones Using
Arene Ruthenium(II) Complexes. Organometallics 2009, 28 (13),
3822−3833.
́
(77) Espino, G.; Caballero, A.; Manzano, B. R.; Santos, L.; Perez-
Manrique, M.; Moreno, M.; Jalon, F. A. Experimental and
(94) Miyake, H.; Kano, N.; Kawashima, T. Isolation of a Metastable
Geometrical Isomer of a Hexacoordinated Dihydrophosphate:
Elucidation of Its Enhanced Reactivity in Umpolung of a Hydrogen
Atom of Water. Inorg. Chem. 2011, 50 (18), 9083−9089.
(95) Wang, W. H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Hirose,
T.; Himeda, Y. Highly Efficient D2 Generation by Dehydrogenation
of Formic Acid in D2O through H+/D+ Exchange on an Iridium
Catalyst: Application to the Synthesis of Deuterated Compounds by
Transfer Deuterogenation. Chem. - Eur. J. 2012, 18 (30), 9397−9404.
(96) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval,
C.; Noyori, R. The Hydrogenation/Transfer Hydrogenation Net-
work : Asymmetric Hydrogenation of Ketones with Chiral η 6
-Arene/N-Tosylethylenediamine-Ruthenium (II) Catalysts. J. Am.
Chem. Soc. 2006, 128 (27), 8724−8725.
́
Computational Evidence for the Participation of Nonclassical
Dihydrogen Species in Proton Transfer Processes on Ru−Arene
Complexes with Uncoordinated N Centers. Efficient Catalytic
Deuterium Labeling of H 2 with CD 3 OD. Organometallics 2012,
31 (8), 3087−3100.
(78) Martínez, M.; Carranza, M. P.; Massaguer, A.; Santos, L.;
Organero, J. A.; Aliende, C.; De Llorens, R.; Ng-Choi, I.; Feliu, L.;
Planas, M.; et al. Synthesis and Biological Evaluation of Ru(II) and
Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer
Targeted Drugs. Inorg. Chem. 2017, 56 (22), 13679−13696.
(79) Chong, C. C.; Kinjo, R. Hydrophosphination of CO2 and
Subsequent Formate Transfer in the 1,3,2-Diazaphospholene-
L
Inorg. Chem. XXXX, XXX, XXX−XXX