Journal of the American Chemical Society
Page 8 of 10
(5) Shimura, K.; Kawai, H.; Yoshida, T.; Yoshida, H. Bifunctional
resultant -CH3 and -H are adsorbed on Pt1 and Pt2,
respectively. Second, another CH4 is activated and
dissociated in the same way as the first CH4 (Figure S22).
Then, the two -H intermediates generate a H2 molecule, and
the two -CH3 intermediates generate a C2H6 molecule. Finally,
the formed C2H6 and H2 are desorbed to complete a cycle
reaction.
Rhodium Cocatalysts for Photocatalytic Steam Reforming of
Methane over Alkaline Titanate. ACS Catal. 2012, 2, 2126-2134.
(6) Chanmanee, W.; Islam, M. F.; Dennis, B. H.; Macdonnell, F.
M. Solar Photothermochemical Alkane Reverse Combustion. P.
Natl. Acad. Sci. USA. 2016, 113, 2579-2584.
(7) Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu,
X.; Deng, D.; Wei, M.; Tan, D.; Si, R.; Zhang, S.; Li, J.; Sun, L.;
Tang, Z.; Pan, X.; Bao, X. Direct, Nonoxidative Conversion of
Methane to Ethylene, Aromatics, and Hydrogen. Science 2014,
344, 616-619.
(8) Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. Active Sites
in Sol-gel Prepared Silica-alumina for Photoinduced Non-
oxidative Methane Coupling. Phys. Chem. Chem. Phys. 2002, 4,
2459-2465.
(9) Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H.
Nonoxidative Coupling of Methane over Supported Ceria
Photocatalysts. J. Phys. Chem. C 2008, 112, 7223-7232.
(10) Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Low-
Temperature Nonoxidative Activation of Methane over H-
Galloaluminosilicate (MFI) Zeolite. Science 1997, 275, 1286-1288.
(11) Shimura, K.; Yoshida, H. Semiconductor Photocatalysts for
Non-oxidative Coupling, Dry Reforming and Steam Reforming of
Methane. Catal. Surv. Asia. 2014, 18, 24-33.
1
2
3
4
5
6
7
8
CONCLUSION
In summary, Pt-loaded and Ga-doped macro-mesoporous
TiO2-SiO2 composites were fabricated and applied to the
photodriven NOCM reaction. Ga doping leads to the
formation of a higher amount of cationic Pt but decreases the
carrier separation efficiency. Through the appropriate tuning
of the Ga doping amount, a high methane conversion rate of
3.48 µmolg-1h-1 can be achieved due to the promoted C-H
cleavage by cationic Pt and the effective separation of photo-
induced charge carriers by metallic Pt. It is expected that this
work will offer significant guidance to the future design of
efficient photocatalysts toward methane conversion, as
achieved through modulation of the surface atomic
arrangement and electronic characteristics of semiconductor
composites.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Yuliati, L.; Itoh, H.; Yoshida, H. Photocatalytic Conversion
of Methane and Carbon Dioxide over Gallium Oxide. Chem.
Phys. Lett. 2008, 452, 178-182.
(13) Teramura, K.; Iguchi, S.; Mizuno, Y.; Shishido, T.; Tanaka,
T. Photocatalytic Conversion of CO2 in Water over Layered
Double Hydroxides. Angew. Chem. Int. Ed. 2012, 124, 8132-8135.
(14) Dong, C.; Xing, M.; Zhang, J. Economic Hydrophobicity
Triggering of CO2 Photoreduction for Selective CH4 Generation
on Noble-Metal-Free TiO2-SiO2. J. Phys. Chem. Lett. 2016, 7,
2962-2966.
ASSOCIATED CONTENT
Supporting Information. HAADF-STEM, TEM and SEM
images, XRD patterns, Raman spectra, UV-Vis DRS spectra,
BET result, HRTEM image, transient photocurrent responses,
room-temperature photoluminescence (PL) emission
spectra, XPS results, and a comparison of the photodriven
methane conversions of different samples.
AUTHOR INFORMATION
Corresponding Author
(15) Dong, C.; Xing, M.; Zhang, J. Double-cocatalysts Promote
Charge Separation Efficiency in CO2 Photoreduction: Spatial
Location Matters. Mate. Horiz. 2016, 3, 608-612.
* jlzhang@ecust.edu.cn
(16) Yoshida, H.; Matsushita, N.; Yuko Kato, A.; Hattori, T.
Synergistic Active Sites on SiO2-Al2O3-TiO2 Photocatalysts for
Direct Methane Coupling. J. Phys. Chem. B 2003, 107, 8355-8362.
(17) Kato, Y.; Matsushita, N.; Yoshida, H.; Hattori, T. Highly
Active Silica-alumina-titania Catalyst for Photoinduced Non-
oxidative Methane Coupling. Catal. Commun. 2002, 3, 99-103.
(18) Yuliati, L.; Hattori, T.; Yoshida, H. Highly Dispersed
Magnesium Oxide Species on Silica as Photoactive Sites for
Photoinduced Direct Methane Coupling and Photoluminescence.
Phys. Chem. Chem. Phys. 2005, 7, 195-201.
(19) Yoshida, H.; Chaskar, M. G.; Kato, Y.; Hattori, T. Active
Sites on Silica-supported Zirconium Oxide for Photoinduced
Direct Methane Conversion and Photoluminescence. J.
Photochem. Photobiol. A. 2003, 160, 47-53.
(20) Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. Highly
Dispersed Ce(III) Species on Silica and Alumina as New
Photocatalysts for Non-oxidative Direct Methane Coupling.
Chem. Commun. 2005, 38, 4824-4826.
(21) Kato, Y.; Yoshida, H.; Satsuma, A.; Hattori, T.
Photoinduced Non-oxidative Coupling of Methane over H-
zeolites Around Room Temperature. Micropor. Mesopor. Mat.
2002, 51, 223-231.
ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (21673073, 21677048 and 5171101651), the
Science and Technology Commission of Shanghai
Municipality (18520710200, 16JC1401400, 17520711500),
Shanghai Pujiang Program (18PJD012), the PetroChina
Innovation Foundation (2015D-5006-0402) and the
Fundamental Research Funds for the Central Universities
(222201717003, 22221818014).
REFERENCES
(1) Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane
to Value-Added Chemicals over Heterogeneous Catalysts:
Challenges and Prospects. Chem. Rev. 2017, 117, 8497-8520.
(2) Yoshida, H.; Hirao, K.; Nishimoto, J.; Shimura, K.; Kato, S.;
Itoh, H.; Hattori, T. Hydrogen Production from Methane and
Water on Platinum Loaded Titanium Oxide Photocatalysts. J.
Phys. Chem. C 2008, 112, 5542-5551.
(3) Yoshida, H.; Kato, S.; Hirao, K.; Jun-Ichi, N.; Hattori, T.
Photocatalytic Steam Reforming of Methane over Platinum-
loaded Semiconductors for Hydrogen Production. Chem. Lett.
2007, 36, 430-431.
(22) Li, L.; Cai, Y. Y.; Li, G. D.; Mu, X. Y.; Wang, K. X.; Chen, J. S.
Synergistic Effect on the Photoactivation of the Methane C-H
Bond over Ga3+-Modified ETS-10. Angew. Chem. Int. Ed. 2012, 51,
4702-4706.
(23) Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z.
Photocatalytic Oxidation of Methane over Silver Decorated Zinc
Oxide Nanocatalysts. Nat. Commun. 2016, 7, 12273.
(4) Shimura, K.; Kato, S.; Yoshida, T.; Itoh, H.; Hattori, T.;
Yoshida, H. Photocatalytic Steam Reforming of Methane over
Sodium Tantalate. J. Phys. Chem. C 2010, 114, 3493-3503.
ACS Paragon Plus Environment