THE MOLECULAR-KINETIC APPROACH
43
11. Cho, K.W. and Kwon, H.S., Catal. Today, 2007,
constant. Correspondingly, simplifications in our cal-
culations were warranted. According to Langmuir–
Hinshelwood and Michaelis–Menten kinetic models,
Ea values for NaBH4 and NH3BH3 were found to be
45.38, 57.37 kJ/mol and 37.61, 52.00 kJ/mol, respec-
tively. Comparing results of kinetic investigation car-
ried out at the same temperature and concentration of
boron hydrides with allowance for correlation co-fac-
tor values, it can be postulated that the Langmuir–
Hinshelwood kinetic model provided a more relevant
explanation for the behavior of our system.
vol. 120, no. 3, p. 298.
12. Sahiner, N., Ozay, O., Inger, E., and Aktas, N., Appl.
Catal., B, 2011, vol. 102, no. 1, p. 201.
13. Qiu, F.Y., Wang, Y.J., Wang, Y.P., Li, L., Liu, G., Yan, C.,
and Yuan, H.T., Catal. Today, 2011, vol. 170, no. 1,
p. 64.
14. Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J.
Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.
15. Simagina, V.I., Komova, O.V., Ozerova, A.M.,
Netskina, O.V., Odegova, G.V., Kellerman, D.G., and
Ishchenko, A.V., Appl. Catal., A, 2011, vol. 394, no. 1,
p. 86.
16. Kaya, M., Zahmakiran, M., Özkar, S., and Volkan, M.,
ACKNOWLEDGMENTS
ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, p. 3866.
The authors would like to thank the Yildiz Techni-
cal University Research Foundation (Project
no. 2012-07-01-GEP01) for its financial support.
17. Liu, B.H. and Li, Z.P., J. Power Sources, 2009, vol. 187,
no. 2, p. 527.
18. Zhang, J.S., Delgass, W.N., Fisher, T.S., and Gore, J.P.,
J. Power Sources, 2007, vol. 164, no. 2, p. 772.
19. Hung, A.J., Tsai, S.F., Hsu, Y.Y., Ku, J.R., Chen, Y.H.,
and Yu, C.C., Int. J. Hydrogen Energy, 2008, vol. 33,
no. 21, p. 6205.
REFERENCES
1. Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gil-
breath, J.R., Hoekstra, H.R., and Hyde, E.K., J. Amer.
Chem. Soc., 1953, vol. 75, no. 1, p. 215.
20. Demirci, U.B. and Miele, P., C. R. Chim., 2014, vol. 17,
no. 7, p. 707.
2. Retnamma, R., Novais, A.Q., and Rangel, C.M., Int. J.
21. Metin, Ö., Dinç, M., Eren, Z.S., and Özkar, S., Int. J.
Hydrogen Energy, 2011, vol. 36, no. 16, p. 9772.
Hydrogen Energy, 2011, vol. 36, no. 18, p. 11528.
3. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R., and
Kothari, D.C., Int. J. Hydrogen Energy, 2012, vol. 37,
no. 3, p. 2397.
4. Abo-Hamed, E.K., Pennycook, T., Vaynzof, Y.,
Toprakcioglu, C., Koutsioubas, A., and Scherman, O.A.,
Small, 2014, vol. 10, no. 15, p. 3145.
22. Luo, Y.C., Liu, Y.H., Hung, Y., Liu, X.Y., and
Mou, C.Y., Int. J. Hydrogen Energy, 2013, vol. 38,
no. 18, p. 7280.
23. Ye, W., Zhang, H., Xu, D., Ma, L., and Yi, B., J. Power
Sources, 2007, vol. 164, no. 2, p. 544.
24. Xu, Q. and Chandra, M., J. Alloy Compd., 2007,
5. Sun, D., Mazumder, V., Metin, O., and Sun, S., ACS
vol. 446, p. 729.
Nano, 2011, vol. 5, no. 8, p. 6458.
25. Coşkuner, B., Figen, A.K., and Pişkin, S., React. Kinet.
6. Xu, Q. and Chandra, M., J. Power Sources, 2006,
Mech. Catal., 2013, vol. 109, no. 2, p. 375.
vol. 163, no. 1, p. 364.
26. Andrieux, J., Demirci, U.B., and Miele, P., Catal.
Today, 2011, vol. 170, p. 13.
7. Metin, O., Mazumder, V., Ozkar, S., and Sun, S., J.
Amer. Chem. Soc., 2010, vol. 132, no. 5, p. 1468.
27. Levenspiel, O., Chemical Reaction Engineering, John
Wiley & Sons, 1999.
8. Yamada, Y., Yano, K., Xu, Q., and Fukuzumi, S., J.
Phys. Chem. C, 2010, vol. 114, no. 39, p. 16456.
28. Figen, A.K. and Coşkuner, B., Int. J. Hydrogen Energy,
2013, vol. 38, no. 6, p. 2824.
9. Wu, C., Wu, F., Bai, Y., Yi, B., and Zhang, H., Mater.
Lett., 2005, vol. 59, no. 14, p. 1748.
29. Kantürk Figen, A., Coşkuner, B., Pişkin, M.B., Dere
Özdemir, Ö. J Int Sci Publications: Mater, Methods &
Techologies, 2013, vol. 7, no. 1, p. 43.
10. Ozerova, A.M., Simagina, V.I., Komova, O.V.,
Netskina, O.V., Odegova, G.V., Bulavchenko, O.A.,
and Rudina, N.A., J. Alloy Compd., 2012, vol. 513, 30. Zhang, Q., Wu, Y., Sun, X., and Ortega, J., Ind. Eng.
p. 266.
Chem. Res., 2007, vol. 46, no. 4, p. 1120.
KINETICS AND CATALYSIS Vol. 60 No. 1 2019