Communication
ChemComm
L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana,
L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen,
G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem. Rev.,
2001, 101, 953–996.
of the hydride ligand to generate H2 does not occur in this
system.29,30 Most importantly, light is required to drive the processes
of (i) and (iii), (iv).
4 N. Armaroli and V. Balzani, ChemSusChem, 2011, 4, 21–36.
In summary, we herein demonstrated the ON/OFF switching
behavior of light-active dinuclear iridium hydride complexes
in the catalytic decomposition of formic acid (FA), resulting in
on-demand H2 production using light as an external stimulus.
Among the various catalysts examined, 1d bearing a 3,5-dimethyl-
phenyl substituent on the phosphorous atom of the BINAP ligand
exhibited the highest catalytic activity under the base-free con-
ditions employed herein. In addition, the catalysts were stable
enough to conduct the reaction without deterioration even after
continuous switching cycles for 54 h. The highest activity was
observed in nitromethane solution, and the catalytic process
also proceeded in water or a neat FA solution. Furthermore,
careful analysis allowed observation of the mono- and bisformate
intermediates, and these were independently synthesized from the
quantitative reactions. The isolated intermediates exhibited catalytic
activity under irradiated conditions, thereby confirming their
contribution to the catalytic cycle. These results are expected to
contribute to the use of FA as a liquid hydrogen carrier for
energy storage applications.
´
5 F. Joo, ChemSusChem, 2008, 1, 805–808.
6 T. C. Johnson, D. J. Morris and M. Wills, Chem. Soc. Rev., 2010, 39,
81–88.
7 K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller and
G. Laurenczy, Chem. Rev., 2018, 118, 372–433.
8 W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and
E. Fujita, Chem. Rev., 2015, 115, 12936–12973.
9 G. Laurenczy and P. J. Dyson, J. Braz. Chem. Soc., 2014, 25, 2157–2163.
10 M. Iglesias and L. A. Oro, Eur. J. Inorg. Chem., 2018, 2125–2138.
¨
11 A. Boddien, F. Gartner, R. Jackstell, H. Junge, A. Spannenberg,
W. Baumann, R. Ludwig and M. Beller, Angew. Chem., Int. Ed.,
2010, 49, 8993–8996.
¨
12 A. Boddien, B. Loges, F. Gartner, C. Torborg, K. Fumino, H. Junge,
R. Ludwig and M. Beller, J. Am. Chem. Soc., 2010, 132, 8924–8934.
13 S. Shitaya, K. Nomura and A. Inagaki, Chem. Commun., 2019, 55,
5087–5090.
14 S. Shitaya, K. Nomura and A. Inagaki, Dalton Trans., 2018, 47,
12046–12050.
15 Y. Matsusaka, S. Shitaya, K. Nomura and A. Inagaki, Inorg. Chem.,
2017, 56, 1027–1030.
16 S. Kikuchi, K. Saito, M. Akita and A. Inagaki, Organometallics, 2018,
37, 359–366.
17 H. Nitadori, T. Takahashi, A. Inagaki and M. Akita, Inorg. Chem.,
2012, 51, 51–62.
18 S. Phungsripheng, M. Akita and A. Inagaki, Inorg. Chem., 2017, 56,
12996–13006.
19 Y. Sofue, K. Nomura and A. Inagaki, Organometallics, 2019, 38,
2408–2411.
This work was supported by Cooperative Research Program
of ‘‘Network Joint Research Center for Materials and Devices’’
and JSPS KAKENHI (B) Grant Number 16H0412100.
20 Noticeable decomposition of the catalst 1a in CD3OD solution was
confirmed by irradition by 365 nm LED lamp (77% decomposition
(365 nm) vs. 3% decomposition (395 nm) under identical condition).
21 A. Matsunami, S. Kuwata and Y. Kayaki, ACS Catal., 2017, 7,
4479–4484.
22 Other complexes having different substituents can be synthesized in
the same procedure.
Conflicts of interest
There are no conflicts to declare.
23 R. L. Sweany, J. Am. Chem. Soc., 1981, 103, 2410–2412.
24 A. J. Esswein, A. S. Veige and D. G. Nocera, J. Am. Chem. Soc., 2005,
127, 16641–16651.
Notes and references
1 A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois,
M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, 25 R. H. Morris, H. C. Foley, T. S. Targos and G. L. Geoffroy, J. Am.
R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Chem. Soc., 1981, 103, 7337–7339.
Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. 26 Y. Gao, J. K. Kuncheria, H. A. Jenkins, R. J. Puddephatt and G. P. A.
Waldrop, Chem. Rev., 2013, 113, 6621–6658. Yap, J. Chem. Soc., Dalton Trans., 2000, 3212–3217, DOI: 10.1039/B004234J.
2 M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 2014, 114, 27 J. J. A. Celaje, Z. Lu, E. A. Kedzie, N. J. Terrile, J. N. Lo and T. J.
1709–1742. Williams, Nat. Commun., 2016, 7, 11308.
3 H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, 28 M. Iguchi, H. Zhong, Y. Himeda and H. Kawanami, Chem. – Eur. J.,
A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, 2017, 23, 17017–17021.
D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, 29 J. Li, J. Li, D. Zhang and C. Liu, ACS Catal., 2016, 6, 4746–4754.
D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, 30 Z. Treigerman and Y. Sasson, ChemistrySelect, 2017, 2, 5816–5823.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020