Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
1
6
38, 10128.
(a) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.
DOI: 10.1039/D0CC01120G
Carlsson, K. Domen and M. Antonietti, Nat. Mater., 2009, 8, 76; (b)
G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti
and X. Wang, Angew. Chem., 2019, 131, 3471.
7
(a) Q. Liang, Z. Li, X. Yu, Z.-H. Huang, F. Kang and Q.-H. Yang, Adv.
Mater., 2015, 27, 4634; (b) M. Zhang, M. Zhou, Z. Luo, J. Zhang, S.
Wang and X. Wang, Chem. Commun., 2020, 56, 2558; (c) W. Zhu, N.
Hao, J. Lu, Z. Dai, J. Qian, X. Yang and K. Wang, Chem. Commun., 2020,
5
2
8
6, 1409; (d) Y. Xu, C. Du, C. Zhou and S. Yang, Int. J. Hydrogen Energy,
020, 45, 4084.
Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L.
Song, J. Zhu, J. Jiang and Y. Xiong, Adv. Mater., 2016,28, 6959.
(a) Y. Dai, P. Ren, Y. Li, D. Lv, Y. Shen, Y. Li, H. Niemantsverdriet, F.
Besenbacher, H. Xiang, W. Hao, N. Lock, X. Wen, J. P. Lewis and R. Su,
Fig. 5 Free energy profiles for the proposed photocatalytic
process.
9
proceed to achieve the H
2
production (step M7 to M8). It Angew. Chem. Int. Ed., 2019, 58, 6265; (b) R.-Y. Guo, L. Sun, X.-Y.
is worth to note that the exothermic reactions in previous Pan, X.-D. Yang, S. Ma and J. Zhang, Chem. Commun., 2018, 54,
steps provide the energy required for the latter 12614.
endothermic reactions in this mechanism; consequently,
the calculation results on free energy confirmed the
feasibility of the proposed process.
In conclusion, a novel, low-cost Ni-DAG-CN complex
was synthesized and displayed a 21-time enhancement of
1
0 (a) S.-M. Lu, Z. Wang, J. Wang, J. Li and C. Li, Green Chem., 2018,
0, 1835; (b) S. M. Pourmortazavi, K. Farhadi, V. Mirzajani, S.
2
Mirzajani and I. Kohsari, J. Therm. Anal. Calorim., 2016, 125, 121.
1 Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen and X. Wang, Chem.
Mater., 2010, 22, 5119.
1
the H
pure g-C
2
evolution rate from ethanol splitting than that of 12 S. J. Lyle, T. M. Osborn Popp, P. J. Waller, X. Pei, J. A. Reimer and
. The significantly increased photocatalytic O. M. Yaghi, J. Am. Chem. Soc., 2019, 141, 11253.
3 4
N
activity can be attributed to the proposed LMCT 13 (a) Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng and L. Huang, Appl.
Catal., B, 2019, 240, 30; (b) Y.-R. Wang, B. Zhang, J.-L. Fan, Q. Yang
3 4
mechanism via the complexation of Ni into g-C N with
and H.-Q. Chen, Food Chem., 2019, 281, 18.
4 Z.-Q. Jiang, X.-L. Chen, J. Lu, Y.-F. Li, T. Wen and L. Zhang, Chem.
Commun., 2019, 55, 6499.
5 M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna and X. Lu, Advanced
Energy Materials, 2019, 9, 1803185.
DAG, which was confirmed by both characterizations and
theoretical calculations. This work provides great potential
to the future design of low-cost, high-performance
1
1
2
photocatalysts for alcohol splitting H evolution.
1
2
1
6 S. S. Mali, J. V. Patil, H. Kim, R. Luque and C. K. Hong, Mater. Today,
019, 26, 8.
7 (a) J. Ran, T. Pan, Y. Wu, C. Chu, P. Cui, P. Zhang, X. Ai, C.-F. Fu,
This work is financially supported by the National
Natural Science Foundation of China (21506095,
2
1801219), the “Qing-Lan” Project of Jiangsu Province, Z. Yang and T. Xu, Angew. Chem. Int. Ed., 2019, 58, 16463; (b) Z.
Top-notch Academic Programs Project of Jiangsu Higher Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu and B. Dong, Adv. Mater.,
Education Institutions (TAPP), and the start-up fund from 2017, 29, 1606688.
1
8 A. L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska,
Yangzhou University.
B. Ohtani, M. A. Valenzuela, H. Remita and C. Colbeau-Justin, Appl.
Catal., B, 2016, 191, 18.
1
9 S. Wang, C. Shen, Y. Xu, Y. Zhong, C. Wang, S. Yang and G. Wang,
Conflicts of interest
There are no conflicts to declare
ChemSusChem, 2019, 12, 4221.
2
5
2
0 Q. Zhang, S. Yang, S.-N. Yin and H. Xue, Chem. Commun., 2017,
3, 11814.
1 S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu, F. Yang, W. Zhu, C. Wang, Z.
Notes and references
Feng, B. Ye and Y. Xie, J. Am. Chem. Soc., 2017, 139, 3438.
2 Z. Ai, Y. Shao, B. Chang, L. Zhang, J. Shen, Y. Wu, B. Huang and X.
Hao, Appl. Catal., B, 2019, 259, 118077.
3 (a) M. Liu, H. Wang, H. Zeng and C.-J. Li, Sci. Adv., 2015, 1,
e1500020; (b) Q. Zhang, C. Du, Q. Zhao, C. Zhou and S. Yang, J.
Taiwan Inst. Chem. Eng., 2019, 102, 182.
2
1
T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D.
Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel,
2
J. K. Stolarczyk and J. Feldmann, Nat. Mater., 2014, 13, 1013.
2
J. Kothandaraman, S. Kar, R. Sen, A. Goeppert, G. A. Olah and G. K.
S. Prakash, J. Am. Chem. Soc., 2017, 139, 2549.
(a) D. Mellmann, P. Sponholz, H. Junge and M. Beller, Chem. Soc.
2
4 A. Wittstock, V. Zielasek, J. Biener, C. M. Friend and M. Bäumer,
Science, 2010, 327, 319.
5 X. Wang, X. Zhang, W. Zhou, L. Liu, J. Ye and D. Wang, Nano
Energy, 2019, 62, 250.
3
Rev., 2016, 45, 3954; (b) J. C. Serrano-Ruiz, R. Luque and A.
Sepúlveda-Escribano, Chem. Soc. Rev., 2011, 40, 5266; (c) Y. Chao,
W. Zhang, X. Wu, N. Gong, Z. Bi, Y. Li, J. Zheng, Z. Zhu and Y. Tan,
Chem. Eur. J., 2019, 25, 189.
2
4
(a) J. Sun and Y. Wang, ACS Catal., 2014, 4, 1078; (b) G. A. Deluga,
J. R. Salge, L. D. Schmidt and X. E. Verykios, Science, 2004, 303, 993.
(a) Z. Liu, Z. Yin, C. Cox, M. Bosman, X. Qian, N. Li, H. Zhao, Y. Du, J.
Li and D. G. Nocera, Sci. Adv., 2016, 2, e1501425; (b) Z. Chai, T.-T.
5
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins