1274
J.R. Ares et al. / Materials Research Bulletin 43 (2008) 1263–1275
suggesting similar thermal decomposition processes to those observed in the decomposition of as-received LiAlH4 at
lower heating rates.
The activation energies of the two decomposition reactions of milled LiAlH4 (t = 1.5 h) were calculated by
Kissinger method. An activation energy of 100 ꢄ 10 kJ/mol was obtained in the first decomposition reactions and a
130 ꢄ 15 kJ/mol in the second decomposition reaction. Therefore, the activation energy of the first decomposition
reaction of milled LiAlH4 is smaller than this of as-received LiAlH4. The difference could be related to the diminution
of crystallite size produced by milling during the first 30 min. A smaller crystallite size would improve the
decomposition kinetics and it would reduce the activation energy. However, with regard to the second reaction, an
increase of the activation energy as compared to un-milled sample is found. This may be attributed to the influence of
aluminium oxides (previously detected by TEM) and/or high-pressure phases that could degrade the process of
decomposition of Li3AlH6.
4. Conclusions
The mechanism of thermal decomposition of LiAlH4 depends on HR. Whereas slow HR lead to an endothermic
decomposition of LiAlH4 into Li3AlH6 without melting and with intermediate processes, fast HR lead to melting
before decomposition of LiAlH4 into Li3AlH6 and diminution of the apparent activation energy. However, the apparent
activation energy of the subsequent decomposition of Li3AlH6 into LiH and Al does not depend on HR. Mechanical
milling of LiAlH4 leads to its decomposition into Li3AlH6 and Al, and after, Li3AlH6 decomposes of into LiH. The
process of decomposition is mechanically driven and Aluminium is detected at particle surface (during milling of
LiAlH4) suggesting the existence of a long-range transport mechanism of Al-species during mechanical
decomposition. Besides, HTREM measurements reveal the existence of an oxide layer on the surface of the
alanate and a formation of high-pressure phase due to milling treatment. Finally, milling LiAlH4 results in reduction of
both temperature reactions. This reduction is mainly attributed to shorter diffusion paths because of a diminution of
particle size during the milling treatment.
References
[1] B.A.M. Seayal, D.M. Antobelli, Adv. Mater 16 (2004) 9.
[2] L. Schlapbach, A. Zu¨ttel, Nature 414 (2001) 353.
[3] B. Bogdanovic, M. Schwickardi, J. Alloys Compd. 253/254 (1997) 1.
[4] G.J. Thomas, K.J. Gross, N.Y.C. Yang, C. Jensen, J. Alloys Compd. 330–332 (2002) 702.
[5] B. Bogdanovic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle, J. Alloys Compd. 302 (2000) 36.
[6] D. Sun, T. Kiyobayashi, H.T. Takeshita, N. Kuriyana, C.M. Jensen, J. Alloys Compd. 337 (2002) L8.
[7] N. Sklar, B. Post, Inorg. Chem. 6 (1967) 669.
[8] M. McCarty, J.N. Maycock, V.R. Pai Verneker, J. Phys. Chem. 72 (12) (1968) 4009.
[9] P. Claudy, B. Bonnetot, J.M. Letoffe, G. Turck, Thermochim. Acta 27 (1978) 213.
[10] J.P. Bastide, B. Bonnetot, J.M. Letoffe, P. Claudy, Mater. Res. Bull. 20 (1985) 999.
[11] V.P. Balema, V.K. Pecharski, K.W. Dennis, J. Alloys Compd. 313 (2000) 69.
[12] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski, V.K. Pecharski, J. Alloys Compd. 1/2 (329) (2001) 108.
[13] M. Resan, H.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (13/14) (2005) 1413.
[14] M. Resan, H.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (13/14) (2005) 1417.
[15] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita, T. Sakai, J. Phys. Chem. B 105 (2001) 11214.
[16] J.A. Dilts, E.C. Ashby, Inorg. Chem. 116 (6) (1972) 1230.
[17] T.N. Dymova, V.N. Konoplev, D.P. Aleksandrov, A.S. Sizareva, T.A. Silina, Russ. J. Coord. Chem. 21 (3) (1995) 165.
[18] H.W. Brinks, B.C. Hauback, P. Norby, H. Fjellvag, J. Alloys Compd. 351 (2003) 222.
[19] J.W. Wiench, V.P. Balema, V.K. Percharski, M. Pruski, J. Solid State Chem. 177 (3) (2004) 648.
[20] T.N. Dymova, D.P. Aleksandrov, V.P. Konoplev, T.A. Silina, N.T. Kuznetsov, Russ. J. Coord. Chem. 19 (1993) 607.
[21] K.J. Gross, S. Guthrie, S. Takura, G. Thomas, J. Alloys Compd. 297 (2000) 270.
[22] C.M. Andrei, J.C. Walmsley, H.W. Brinks, R. Holmestad, D. Blanchard, B.C. Hauback, G.A. Botton, J. Phys. Chem. B 109 (2005) 4350.
[23] C.M. Andrei, J.C. Walmsley, D. Blanchard, H.W. Brinks, R. Holmestad, B.C. Hauback, J. Alloys Compd. 395 (1/2) (2005) 307.
[24] G. Sandrock, J. Reilly, J. Graetz, W.-M. Zhou, J. Johnson, J. Wegrzyn, Appl. Phys. A 80 (2005) 687.
[25] N.N. Mattesva, A.I. Golanova, Russ. J. Appl. Chem. 73 (2000) 747.
[26] D.S. Easton, J.H. Scheinbel, S.A. Speakman, J. Alloys Compd. 398 (2005) 135.
[27] P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Phys. Rev. B 69 (2004) 020104.
[28] A.V. Talyzin, B. Sundqvist, Phys. Rev. B 70 (2004) 180101.