M. Chakraborty et al. / Polyhedron 50 (2013) 602–611
611
[6] R.J. Greenwood, G.L. Wilson, J.R. Pilbrow, A.G. Weed, J. Am. Chem. Soc. 115
(1993) 5385. and reference therein.
4. Conclusion
[7] (a) E.I. Stiefel, D. Coucouvans, W.E. Newton (Eds.), Molybdenum Enzymes
Cofactor and Model Systems, ACS Symposium Series, 535 American Chemical
Society, Washington, DC, 1993.;
(b) G.N. George, R.C. Kipke, R.A. Sunde, J.H. Enemark, Biochem. J. 256 (1988)
307.
[8] D. Collison, C.D. Garner, J.A. Joule, Chem. Soc. Rev. 25 (1996) 25.
[9] R. Hille, Chem. Rev. 96 (1996) 2757.
[10] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, S. Ray, R.J. Butcher, S.S. Mandal,
Polyhedron 23 (2004) 1595.
[11] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, S. Chaudhuri, M.G.B. Drew, S.S.
Mandal, J. Coord. Chem. 60 (2007) 2177.
[12] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, S.S. Mandal, J. Coord. Chem. 62
(2009) 3845.
[13] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, S.S. Mandal, J. Indian Chem. Soc.
86 (2009) 564.
The desired dioxomolybdenum (VI) complexes of the type
MoO2L and MoO2LꢀB have been successfully synthesized and char-
acterized by various physico-chemical techniques, and complexes
1, 2 and 4 were structurally characterized by X-ray crystallographic
analysis. The substrate binding characteristic of model complexes
is demonstrated by the formation of MoO2LꢀB adducts involving a
neutral monodentate Lewis base such as
tuted imidazole.
c-picoline and substi-
The resemblance of these complexes with the active center of
some known oxo-transfer molybdoenzymes containing a ONS do-
nor environment has been demonstrated through oxo-abstraction
of the dioxo Mo(VI) complexes by PPh3 to the corresponding
mono-oxo Mo(IV) species, and re-oxidation of the resultant
mono-oxo Mo(IV) complexes to the parent Mo(VI) species by the
use of DMSO/pyridine N-oxide has been achieved. The one step
two electron reduction of MoO2L is supported by electrochemical
studies. Relevant DFT calculations on the ligand and complexes 1,
2 and 4 were also carried out and the data was used to identify
the composition of the relevant HOMOs and LUMOs and also to as-
sign the experimentally observed transitions.
[14] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, R.J. Butcher, S.S. Mandal, J. Coord.
Chem. 64 (2011) 1207.
[15] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, M.G.B. Drew, T.K. Mondal, S.S.
Mandal, Inorg. Chim. Acta 383 (2012) 60.
[16] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[17] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[18] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preub, Theor. Chim. Acta 77
(1990) 123.
[19] P. Fuentealba, H. Preuss, H. Stoll, L.V. Szentpaly, Chem. Phys. Lett. 89 (1982)
418.
[20] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454.
[21] R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109 (1998) 8218.
[22] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998)
4439.
[23] V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995.
[24] M. Cossi, V. Barone, J. Chem. Phys. 115 (2001) 4708.
[25] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24 (2003) 669.
[26] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
[27] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839.
[28] Y.-L. Zhai, X.-X. Xu, X. Wang, Polyhedron 11 (1992) 415.
[29] F.A. Cotton, R.M. Wing, Inorg. Chem. 4 (1965) 867.
[30] M. Goodgame, P.J. Hayward, J. Chem. Soc. A (1966) 632.
[31] M. Chaudhury, J. Chem. Soc., Dalton Trans. (1984) 115.
[32] C. Bustos, O. Burckhardt, R. Schrebler, D. Carrillo, A.M. Arif, A.H. Cowley, C.M.
Nunn, Inorg. Chem. 29 (1990) 3996.
Acknowledgments
We are grateful to Dr. Sasankasekhar Mohanta, Department of
Chemistry, Calcutta University and Dr. Ramaprasad Chakraborty,
former Associate Professor, Bidhannagar College, for their constant
support and interest in the work. Thanks are also due to Prof. T.K.
Basu, Director, NITMAS, Jhinga, District: 24 Pgs. (S), West Bengal
743368 for regular encouragement and help.
Appendix A. Supplementary data
CCDC 874432–874434 contain the supplementary crystallo-
graphic data for 1, 2 and 4, respectively. These data can be obtained
ing.html, or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or
e-mail: deposit@ccdc.cam.ac.uk.
[33] R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. (1996) 2239.
[34] S. Bhattacharyya, S.B. Kumar, S.K. Dutta, E.R.T. Tiekink, M. Chaudhury, Inorg.
Chem. 35 (1996) 1967.
References
[35] M. Chaudhury, Inorg. Chem. 24 (1985) 3011.
[1] (a) C.L. Rollinson, Chromium, molybdenum and tungsten, Chap. 36, in:
Comprehensive Inorganic Chemistry, vol. 3, Pergamon Press, Oxford, 1973, p.
623.;
[36] R. Hahn, U. Kusthardt, W. Scherer, Inorg. Chim. Acta 210 (1993) 177.
[37] R. Mattes, V. Mikloweit, Inorg. Chim. Acta 122 (1986) L19.
[38] A.P. Koley, S. Purohit, S. Ghosh, L.S. Prasad, P.T. Manoharan, J. Chem. Soc.,
Dalton Trans. (1988) 2607.
[39] (a) S. Purohit, A.P. Koley, L.S. Prasad, P.T. Manoharan, S. Ghosh, Inorg. Chem. 28
(1989) 3735;
(b) P. Subramanian, J.T. Spence, R. Ortega, J.H. Enemark, Inorg. Chem. 23
(1984) 2564.
[40] J.A. Craig, E.W. Harlan, B.S. Snyder, M.A. Whitener, R.H. Holm, Inorg. Chem. 28
(1989) 2082.
[41] J.M. Berg, R.H. Holm, J. Am. Chem. Soc. 106 (1984) 3035.
[42] I. Buchanan, M. Minelli, M.T. Ashby, J.T. King, J.H. Enemark, C.D. Garner, Inorg.
Chem. 23 (1984) 495.
[43] S.K. Dutta, D.B. McConville, W.J. Youngs, M. Chaudhury, Inorg. Chem. 36 (1997)
2517.
[44] J. Limatainen, A. Lehtonen, R. Sillanpaa, Polyhedron 19 (2000) 1133.
[45] B.B. Kaul, J.H. Enemark, S.L. Merbs, J.T. Spence, J. Am. Chem. Soc. 170 (1985)
2885.
[46] E.I. Steifel, in: G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, vol.
3, Pergamon, Oxford, 1987, pp. 1375–1420.
(b) F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley-
Interscience, NY, 1988. p. 804;
(c) N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press,
Oxford, 1984. p. 1167.
[2] R.K. Grasselli, Catal. Today 49 (1999) 141.
[3] K.J. Ivin, J.C. Mol, Olefin Metathesis Polymerization, Academic Press, London,
1997.
[4] (a) A. Muller, B. Kerbs, Sulfur, its significance for chemistry, for the geo and
cosmosphere and technology, in: Studies in Inorganic Chemistry, vol. 5,
Elsevier Science Publishers, Amsterdam, 1984; (b) S.D. Conradsson, B.K.
Burgess, W.W. Newton, K.O. Hodgson, J.W. McDonald, J.F. Rubinson, S.F.
Gheller, L.E. Mortenson, M.W.W. Adams, P.K. Mascharak, W.A. Armstrong, R.H.
Holm, J. Am. Chem. Soc. 107 (1985) 7935–7940; (c) P.M. Harisson,
Metalloproteins, Part 1, Metalloproteins with Redox Roles, Verlag, Chemie,
Weinheim, FRG, 1985.
[5] (a) R.H. Holm, J.M. Berg, J. Am. Chem. Soc. 107 (1985) 925;
(b) J.H. Enemark, C.G. Young, Adv. Inorg. Chem. 40 (1993) 1;
(c) L.J. Laughlin, C.G. Young, Inorg. Chem. 35 (1996) 1050;
(d) J. Christiansen, R.C. Tittsworth, B.J. Hales, S.P. Cramar, J. Am. Chem. Soc. 117
(1995) 10017.
[47] A. Rana, R. Dinda, P. Sengupta, S. Ghosh, L.R. Falvello, Polyhedron 21 (2002)
1023.