10.1002/anie.201710418
Angewandte Chemie International Edition
COMMUNICATION
the current and glucose concentration can be observed from 0.1
to 1.7 mM (Figure S11). The new electrochemical glucose
biosensor exhibits much wider range of glucose detection than
that of mentioned colorimetric sensor, expanding the
applications of bioanalysis.
[3]
[4]
K. Wang, D. Feng, T.-F. Liu, J. Su, S. Yuan, Y.-P. Chen,
M. Bosch, X. Zou, H.-C. Zhou, J. Am. Chem. Soc. 2014,
136, 13983-13986.
aD. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C.
Zhou, Angewandte Chemie 2012, 124, 10453-10456; bX.-
S. Wang, M. Chrzanowski, D. Yuan, B. S. Sweeting, S. Ma,
Chem. Mater. 2014, 26, 1639-1644; cR. W. Larsen, L.
Wojtas, J. Perman, R. L. Musselman, M. J. Zaworotko, C.
M. Vetromile, J. Am. Chem. Soc. 2011, 133, 10356-10359.
aP. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P.
Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev.
2012, 112, 1232-1268; bJ. Zhuang, C.-H. Kuo, L.-Y. Chou,
D.-Y. Liu, E. Weerapana, C.-K. Tsung, ACS Nano 2014, 8,
2812-2819; cH. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo,
A. M. Nyström, X. Zou, J. Am. Chem. Soc. 2016, 138,
962-968; dJ. S. Kahn, L. Freage, N. Enkin, M. A. A. Garcia,
I. Willner, Adv. Mater. 2017, 29, 1602782-n/a; eY. Hu, H.
Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L.
Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H.
Wei, ACS Nano 2017, 11, 5558-5566.
aX. Wu, C. Yang, J. Ge, Z. Liu, Nanoscale 2015, 7,
18883-18886; bK. Liang, R. Ricco, C. M. Doherty, M. J.
Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C.
J. Doonan, P. Falcaro, Nat. Commun. 2015, 6, 7240; cF.-
S. Liao, W.-S. Lo, Y.-S. Hsu, C.-C. Wu, S.-C. Wang, F.-K.
Shieh, J. V. Morabito, L.-Y. Chou, K. C. W. Wu, C.-K.
Tsung, J. Am. Chem. Soc. 2017, 139, 6530-6533; dX. Lian,
Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar,
X. Wang, H.-C. Zhou, Chem. Soc. Rev. 2017, 46, 3386-
3401.
In summary, we have fabricated
a
colorimetric and
electrochemical glucose sensor based on the multi-enzyme
system GOx@ZIF-8(NiPd). GOx@ZIF-8(NiPd) not only exhibited
the peroxidase-like activity but also could catalyze the oxidation
of glucose. Besides, GOx@ZIF-8(NiPd)/GCE possessed high
electrocatalytic activity for ORR and showed good
electrochemical performance toward glucose. We also believe
that the obtained ZIF-8(NiPd) has the ability of the molecule-
size-selective catalysis in the hydrogenation. In a word, we
reported a simple, facile and green method for the direct
synthesis of enzyme-embeded MOFs with multi-catalysis
properties, and the obtained nanocomposites exhibited special
nanoflower structure. Given the variety of nanozyme and
proteins, this new method opens an avenue for combining
together their properties and functionalities, displaying important
features enabling applications in biosensors, biofuel cells,
analytical devices and industrial catalysis.
[5]
[6]
Acknowledgements
[7]
[8]
F. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano Lett.
2014, 14, 5761-5765.
This work was supported by the National Natural Science
Foundation of China (Nos. 21375123 and 21675151) and the
Ministry of Science and Technology of China (Nos.
2013YQ170585 and 2016YFA0203201).
aC. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li, W. Zhu, D.
Pan, H. Zhu, M. Liu, Nanoscale 2015, 7, 18770-18779; bH.
Cheng, L. Zhang, J. He, W. Guo, Z. Zhou, X. Zhang, S.
Nie, H. Wei, Anal. Chem. 2016, 88, 5489-5497; cY. Yin, C.
Gao, Q. Xiao, G. Lin, Z. Lin, Z. Cai, H. Yang, ACS Appl.
Mat. Interfaces 2016, 8, 29052-29061.
Keywords: GOx@ZIF-8(NiPd) nanoflower • artificial enzyme
system • tandem catalysis • oxygen reduction reaction • glucose
detection
[9]
Q. Wang, L. Zhang, C. Shang, Z. Zhang, S. Dong, Chem.
Commun. 2016, 52, 5410-5413.
[10]
aL. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N.
Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, X. Yan,
Nat. Nanotechnol. 2007, 2, 577-583; bH. Wei, E. Wang,
Chem. Soc. Rev. 2013, 42, 6060-6093; cH. Wei, E. Wang,
Anal. Chem. 2008, 80, 2250-2254; dQ. Wang, X. Zhang, L.
Huang, Z. Zhang, S. Dong, ACS Appl. Mat. Interfaces
2017, 9, 7465-7471.
aA. Lukton, Nature 1961, 192, 422-424; bE. Cauët, M.
Rooman, R. Wintjens, J. Liévin, C. Biot, J. Chem. Theory
Comput. 2005, 1, 472-483.
Y. Feng, A. Schmidt, R. A. Weiss, Macromolecules 1996,
29, 3909-3917.
W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan,
ACS Nano 2010, 4, 7451-7458.
Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem.
Soc. 2009, 131, 13200-13201.
[1]
aH. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi,
Science 2013, 341; bO. M. Yaghi, M. O'Keeffe, N. W.
Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003,
423, 705-714; cH.-C. Zhou, J. R. Long, O. M. Yaghi,
Chem. Rev. 2012, 112, 673-674.
[11]
[2]
aR. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed.
2008, 47, 4966-4981; bM. Maes, L. Alaerts, F.
Vermoortele, R. Ameloot, S. Couck, V. Finsy, J. F. M.
Denayer, D. E. De Vos, J. Am. Chem. Soc. 2010, 132,
2284-2292; cJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev.
2012, 112, 869-932; dQ. Yang, Q. Xu, S.-H. Yu, H.-L.
Jiang, Angew. Chem. Int. Ed. 2016, 55, 3685-3689; eJ.-D.
Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-
L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 9389-9393.
[12]
[13]
[14]
This article is protected by copyright. All rights reserved.