STRUCTURAL AND PHARMACOLOGICAL STUDIES
931
temperature show a broad signal at giso = 1.9584−1.9902 in REFERENCES
1. Rossen, K.; Steven, A.; Sager, J.; Reamer, R.A.; Askin, D.; Volante, R.P.;
Reider, P.J. Tetrahedron Lett. 1995, 36, 6419.
2. Rawls, R.L. Chem. Eng. 1998, 76, 29.
3. Broekkamp, C.L.E.; Leysen, D.; Peeters, B.W.M.M.; Pinder, R.M. J. Med.
Chem. 1995, 38, 4615.
4. Mahmood Sahajwalla, C. Clin. Pharmacokinet. 1999, 36, 277.
5. Prelog, V.; Driza, G.J. Coll. Czech. Chem. Commun. 1993, 5, 497.
6. Cunha, S.; Oliveira, S.M.; Rodrigues, M.T., Jr.; Bastos, R.M.; Ferrari, J.;
de Oliveira, C.M.A.; Kato, L.; Napolitano, H.B.; Vencato, I.; Lariucci, C.
J. Molec. Struct. 2005, 752, 32, and referencesthere in.
7. Turan-Zitouni, G.; Sivaci, M.; Kilic, F.S.; Erol, K. Eur. J. Med. Chem. 2001,
36, 685.
8. Maurya, R.C.; Pandey, A.; Chaurasia, J.; Martin, H. J. Molec. Struct. 2006,
798, 89.
9. Shankar, G.; Premkumar, R.R.; Ramalingam, S.K. Polyhedron 1986, 5,
991.
10. Raman, N.; Raja, S.J.; Sakthivel, A. J. Coord. Chem. 2009, 62, 691.
11. Barry, A.L.; Brown, S.D. J. Clin. Microbiol. 1996, 34, 2154.
12. Sharma, A.K.; Chandra, S. Spectrochim. Acta A 2011, 78, 337.
13. Geary, W.G. Coord. Chem. Rev. 1971, 7, 81.
14. Ismail, K.J. Transiton Metal Chem. 2000, 25, 522.
15. Raman, N.; Thalamuthu, S.; Raja, J.D.; Neelakandan, M.A.; Banerjee, S.
J. Chil. Chem. Soc. 2008, 53, 1450.
solid state (Figure 5a). The EPR results of complexes are also
consistent with the hexacoordinated environment around the
Cr(III) metal ion and octahedral geometry (Figure 6a).[22–24]
The X-band EPR spectra of Mn(II) complexes in polycrys-
talline form at room temperature as well as liquid nitrogen
temperature give only one signal at giso = 2.0006–2.3865 (Fig-
ure 5b). However, the EPR spectra in solution form show the hy-
perfine splitting and give the sextet at giso = 1.9974–2.2016 due
to electron spin–nuclear spin coupling (55Mn, I = 5/2). The elec-
tron spin–nuclear spin hyperfine coupling constant Aiso values
(88.5–96.0) are consistent with hexabonded environment around
Mn(II) metal ion having octahedral geometry (Figure 6b).[22–24]
Pharmacological Studies
The fungicidal investigation data of the compounds are sum-
marized in Table 5. The results of the investigations account for
the antipathogenic behavior of the compounds, and this efficacy
is positively modified on complexation (Figure 7). Overtone’s
concept and chelation theory explain well this drug action.[25,26]
Moreover, the affinity for genetic material DNA/RNA of mi-
croorganisms and the binding of redox metal ion cofactor are
key features for pharmaceutical action of the compounds.[27–29]
16. Ferraro, J.R. Low Frequency Vibrations of Inorganic and Coordination
Compounds; Plenum Press: New York, 1971.
17. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination
Compounds; Wiley Intrescience: New York, 1978.
18. Chandra, S.; Sharma, A.K. Spectrochim. Acta A 2009, 72, 851.
19. Chandra, S.; Sharma, A.K. J. Coord. Chem. 2009, 62,
3688.
CONCLUSIONS
Thesynthesis andmycological investigationsofanovelmetal
binding chelate derived from antipyrine and piperazine deriva-
tives and its complexes have become successful efforts in explor-
ing the pharmaceutical strategies of these two class derivatives
(antipyrine and piperazine). The structural analysis of the com-
pounds with physicochemical and spectral studies accounts for
the monomeric, stable, paramagnetic, and non-electrolytic or
electrolytic nature of the complexes having six-coordinated oc-
tahedral chelating environment. Solid-state EPR spectra of both
Cr(III) and Mn(II) complexes do not show any hyperfine split-
ting, but the solution-form EPR spectra of the Mn(II) complexes
give six lines due electron spin and nuclear spin interaction.
The findings of the fungicidal investigation of the compounds
against the opportunistic pathogens reveal that the synthesized
compounds have antipathogenic potential.
20. Lever, A.B.P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam,
1968.
21. Chandra, S.; Sharma, A.K. J. Indian Chem. Soc. 2009, 86, 690.
22. Yen, T.F. Electron Spin Resonance of Metal Complexes, Ist ed. Plenum
Press, New York, 1969.
23. Chandra, S.; Sharma, A.K. Spectrochim. Acta A 2009, 74, 271.
24. Carrington, A.; McLachlan, A.D. Introduction to Magnetic Resonance;
Harper & Row: New York, 1969.
25. Lawrence, P.G.; Harold, P.L.; Francis, O.G. Antibiotic Chemother. 1980, 5,
1597.
26. Tweedy, B.G. Phytopathology 1964, 55, 910.
27. Sigel, H.; Sigel, A., eds. Metal Ions in Biological Systems, Vol. 41; Marcel
Dekker: New York, 2004.
28. Marshall, E.L.; Graham, D.R.; Reith, K.A. Biochemistry 1981, 20,
224.
29. Chandra, S.; Jain, D.; Sharma, A.K.; Sharma, P. Molecules 2009, 14,
174.