Organic & Biomolecular Chemistry
is a mixture of three stereoisomers in a ratio of 2.5 : 1.6 : 1 ( H
Paper
1
(d) Ł. Joachimiak and K. M. Błażewska, J. Med. Chem., 2018,
61, 8536–8562; (e) Á. Tajti and G. Keglevich, in
Organophosphorus Chemistry, ed. G. Keglevich, Boston: De
Gruyter, Berlin, 2018, pp. 53–65.
3
1
1
and P NMR data). H NMR (400.13 MHz, CDCl ): δ 1.16, 1.25,
3
3
3
3
1
.32, 1.44 (4 d, Me, JHH = 7.0 Hz, JHH = 6.9 Hz, JHH = 7.0 Hz,
3
JHH = 7.0 Hz); 1.49–1.55, 2.07–2.16, 2.34–2.71 (3 m, 4H,
CH P); 3.17–3.26, 3.33–3.50 (2 m, 2H, PhCH
̲
2 (a) Y. K. Kim, T. Livinghouse and Y. Horino, J. Am. Chem.
Soc., 2003, 125, 9560–9561; (b) D. Cauzzi, C. Graiff,
R. Pattacini, G. Predieri, A. Tiripicchio, S. Kahlal and
J.-Y. Saillard, Eur. J. Inorg. Chem., 2004, 1063–1072;
(c) D. B. G. Williams, S. J. Evans, H. de Bod,
M. S. Mokhadinyana and T. Hughes, Synthesis, 2009, 3106–
3112; (d) C. Popovici, I. Fernández, P. Oña-Burgos,
L. Roces, S. García-Granda and F. López Ortiz, Dalton
Trans., 2011, 40, 6691–6703.
3 (a) X. Song and M. Bochmann, J. Chem. Soc., Dalton Trans.,
1997, 2689–2692; (b) P. Oña Burgos, I. Fernández,
M. J. Iglesias, S. García-Granda and F. López Ortiz, Org.
Lett., 2008, 10, 537–540; (c) R. H. Crampton, S. El Hajjaji,
M. E. Fox and S. Woodward, Tetrahedron: Asymmetry, 2009,
20, 2497–2503.
4 B. Tang, B. Ding, K. Xu and L. Tong, Chem. – Eur. J., 2009,
15, 3147–3151.
5 (a) C.-S. Cho, S.-C. Fu, L.-W. Chen and T.-R. Wu, Polym. Int.,
1998, 47, 203–209; (b) Z. Jiang, D. Xu, X. Ma, J. Liu and
P. Zhu, Cellulose, 2019, 26, 5783–5796.
6 (a) F. Orsini, G. Sello and M. Sisti, Curr. Med. Chem., 2010,
17, 264–289; (b) P. Jeschke, Pest Manag. Sci., 2016, 72, 210–
225.
2
3
(3 br s, 2H, NH
2
); 6.52, 6.55, 6.61 (3 d, 1H, H
3
, OPh, JHH = 8.8
Hz); 7.16–7.37 (m, 10H, Ho,m,p, P
̲ ̲
HH
CH); 7.83, 7.85, 7.87, 7.88 (4
3
4
dd, 1H, H , OPh, J = 8.8 Hz, J = 2.5 Hz); 7.93, 8.02, 8.04
4
HH
4
4
(
(
6
3 dd, 1H, H , OPh, JHH = 2.5 Hz, JHH = 1.5 Hz). C{ H} NMR
100.62 MHz, CDCl
3
): δ 24.4, 24.5, 25.0, 25.2 (4 d, Me, JPC
3
3
3
1
3
1
5
6
C
3.9 Hz, J = 15.2 Hz, J = 13.5 Hz, J = 14.2 Hz); 35.4,
PC
PC
PC
2
2
6.0, 36.1, 36.3 (4 d, PhC
̲
2
.5 Hz, JPC = 1.0 Hz); 43.1, 44.2, 44.9, 45.1 (4 d, CH
1
1
1
6.5 Hz, J = 52.9 Hz, J = 52.1 Hz, J = 54.3 Hz, J
PC
PC
PC
4
4.6 Hz); 114.0, 114.2, 114.4 (C , OPh); 116.6, 117.8, 118.1 (3 d,
3
3
3
6
, OPh, JPC = 5.0 Hz, JPC = 4.2 Hz, JPC = 4.4 Hz); 122.2,
1
22.4 (C , OPh); 126.9, 127.1, 127.2, 128.4 (C , P
3
1
1
1
1
27.3, 127.5 (C
o
, P
, OPh,
̲
h
̲
CH); 128.9, 129.0, 129.1 (C
3
36.5 (2 d, C
2
J
PC = 9.9 Hz); 137.8, 138.0 (C
2
2
44.9, 145.1 (2 d, C , OPh, J = 4.3 Hz, J = 5.3 Hz); 145.6,
1
PC
PC
3
i
45.7, 145.9, 146.0 (4 d, C , P ̲h ̲C H, JPC = 14.5 Hz, JPC = 14.1
3
3
15
Hz,
JPC = 12.3 Hz,
J
PC = 15.7 Hz). N NMR (40.56 MHz,
3
1
CDCl ): δ −316.6 (NH ); −9.6 (NO ). P NMR (161.98 MHz,
CDCl
3
2
2
1
3
): δ 106.2 (+d-satellites, JPSe = 804.6 Hz); 109.7 (+d-satel-
1
1
lites, JPSe = 807.9 Hz); 110.0 (+d-satellites, JPSe = 804.1 Hz).
7
7
Se NMR (76.31 MHz, CDCl ): δ −227.9 (d, J
3
1
1
−
217.3 (d, JPSe = 804.6 Hz); −211.2 (d, JPSe = 804.1 Hz). IR
(
1
8
neat): νmax = 3198, 3065, 3027, 2964, 2924, 2874, 1618, 1588,
7 (a) D. V. Aleksanyan, V. A. Kozlov, Y. V. Nelyubina,
K. A. Lyssenko, L. N. Puntus, E. I. Gutsul, N. E. Shepel,
A. A. Vasil’ev, P. V. Petrovskii and I. L. Odinets, Dalton
Trans., 2011, 40, 1535–1546; (b) G. M. Dobrikov,
V. Valcheva, M. Stoilova-Disheva, G. Momekov,
P. Tzvetkova, A. Chimov and V. Dimitrov, Eur. J. Med.
Chem., 2012, 48, 45–56; (c) G. Bianchini, G. Strukul,
D. F. Wass and A. Scarso, RSC Adv., 2015, 5, 10795–10798.
508, 1452, 1393, 1309, 1198, 1153, 1086, 1051, 1005, 962, 908,
−1
45, 759, 736, 704, 643, 530, 487 cm . Anal. calcd for
PSe: C 57.49; H 5.43; N 5.59; P 6.18; Se 15.75.
24 27 2 3
C H N O
Found: C 57.68; H 5.50; N 5.66; P 6.00; Se 15.59.
Conflicts of interest
8
F. R. Atherton, H. T. Openshaw and A. R. Todd, J. Chem.
Soc., 1945, 660–663.
There are no conflicts to declare.
9
(a) S. S. Le Corre, M. Berchel, H. Couthon-Gourvès,
J.-P. Haelters and P.-A. Jaffrès, Beilstein J. Org. Chem., 2014,
Acknowledgements
1
0, 1166–1196; (b) Y. Ou, Y. Huang, Z. He, G. Yu, Y. Huo,
X. Li, Y. Gao and Q. Chen, Chem. Commun., 2020, 56, 1357–
360.
The main results were obtained using the equipment of the
Baikal Analytical Center for Collective use SB RAS. The
quantum chemical calculations were performed on the compu-
tational cluster “Academician V.M. Matrosov” of Irkutsk
Supercomputer Center SB RAS.
1
1
0 (a) G. Wang, R. Shen, Q. Xu, M. Goto, Y. Zhao and
L.-B. Han, J. Org. Chem., 2010, 75, 3890–3892;
(
b) N. K. Gusarova, P. A. Volkov, N. I. Ivanova, L. I. Larina
and B. A. Trofimov, Tetrahedron Lett., 2011, 52, 2367–2369;
c) N. K. Gusarova, P. A. Volkov, N. I. Ivanova, L. I. Larina
and B. A. Trofimov, Synthesis, 2011, 3723–3729;
d) S. Wagner, M. Rakotomalala, Y. Bykov, O. Walter and
(
Notes and references
(
1
(a) E. L. Ravaschino, R. Docampo and J. B. Rodriguez,
J. Med. Chem., 2006, 49, 426–435; (b) S. Dehghanpour,
Y. Rasmi and M. Bagheri, Mol. Divers., 2007, 11, 47–57;
M. Dőring, Heteroat. Chem., 2012, 23, 216–222;
(e) N. K. Gusarova, P. A. Volkov, N. I. Ivanova, L. I. Larina
and B. A. Trofimov, Heteroat. Chem., 2012, 23, 322–328;
(f) N. K. Gusarova, P. A. Volkov, N. I. Ivanova, Y. V. Gatilov
and B. A. Trofimov, Tetrahedron Lett., 2013, 54, 3543–3545;
(g) P. A. Volkov, N. I. Ivanova, N. K. Gusarova and
B. A. Trofimov, J. Sulfur Chem., 2014, 35, 237–247; (h) X. Yu,
(
c) F.-R. Alexandre, A. S. Amador, S. Bot, C. T. Caillet,
T. Convard, J. Jakubik, C. Musiu, B. Poddesu, L. Vargiu,
M. Liuzzi, A. Roland, M. Seifer, D. Standring, R. Storer and
C. B. Dousson, J. Med. Chem., 2011, 54, 392–395;
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem.