3
external nucleophile, and then diminish the nucleophilicity of the
nitrogen by switching N-benzyl protecting group to unreactive N-
carbamate before the intramolecular etherification. Thus
addition, these structures contain both embedded morpholine
and pyrrolidine thus serving as novel replacement of either motif
in medicinal chemistry. The unique conformations and their
potential impacts on biological activity upon incorporation into
small molecule drug candidates will add further value into both
scaffolds. In the future design and synthesis, the location of the
carboxyl group could be tuned and placed to β- or γ- position of
the nitrogen which would provide further opportunities to
modulate basicity of the nitrogen and control the relative
orientation of substituents on both nitrogen and carboxyl group.
The application of these two building blocks in drug discovery is
ongoing, and their impacts on physicochemical properties as well
as pharmacokinetics will be evaluated and disclosed in due
course.
compound 12 was treated with I
then NaOAc at elevated temperature. To our delight, compound
6 was obtained in 45% isolated yield presumably via
regioselective opening of the aziridine ring at the less hindered
2 3
in the presence of NaHCO and
1
16
position by acetate. Further N-Bn and O-Ac deprotection
reactions were followed by N-Boc protection to give alcohol 17
in 89% yield. The free hydroxyl group of 17 was converted to O-
Ts leaving group, and the following one-pot TBS-deprotection
and morpholine ring formation proceeded uneventfully in the
o
presence of TBAF at 60 C with moderate yield. Again the free
alcohol of compound 18 was oxidized to carboxylic acid via
1
7
15
Dess-Martin oxidation and then Pinnick-Lindgren oxidation .
The final N-Boc deprotection furnished compact module 3-oxa-
8
-azabicyclo[3.2.1]octane-5-carboxylic acid 2 with 45% yield
Acknowledgments
over 3 steps.
The work was supported by Hoffmann-La Roche AG. The
authors would like to thank Ms Leimin Wang for NMR studies,
Dr. Wenzhe Lv and Mr. Sheng Zhong for high resolution MS
studies.
(
)2
a-c
8%
4
3
11
References and notes
d, e
84%
1
2
.
.
Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv.
Drug Delivery Rev. 1997, 23, 3–25.
(a) Tarcsay, Á.; Nyiri, K.; Keserű, G. M. J. Med. Chem. 2012, 55,
f
(
)2
1
2
2
252–1260. (b) Waring, M. J. Expert Opin. Drug Discov. 2010, 5,
35–248. (c) Ritchie, T. J.; Macdonald, J. F. Drug Discov. Today
014, 19, 489–495.
1
4
13
12
45%
3
4
5
.
.
.
Morgan, P.; Van Der Graaf, P. H.; Arrowsmith, J., Felner, D. E.;
Drummond, K. S.; Wegner, C. D.; Street, S. D. Drug Discov. Today
X g
h
2
012, 17, 419–424.
(a) Van de Waterbeemd, H.; Gifford, E. Nat. Rev. Drug Discov. 2003,
, 192–204. (b) Cumming, J.; Davis, A. M.; Muresan, S.; Haeberlein,
2
M.; Chen, H. Nat. Rev. Drug. Discov. 2013, 12, 948–962.
(a) Carreira, E.; Fessard, T. C. Chem. Rev. 2014, 114, 8257–8322. (b)
Rogers-Evans, M.; Knust, H.; Plancher, J.-M.; Carreira, E.M.;
Wuitschik, G.; Burkhard, J.; Li, D. B.; Guérot, C. Chimia 2014, 68,
1
5
16
4
92–499. (c) Goldberg, F. W.; Kettle, J. G.; Kogej, T.; Perry, M. W.
8
9% i-k
D.; Tomkinson, N. P. Drug Discov. Today 2015, 20, 11–17. (d)
Druzhenko, T.; Denisenko, O.; Kheylik, Y.; Zozulya, S.; Shishkina,
S.S.; Tolmachev, A.; Mykhailiuk, P.K. Org. Lett. 2015, 17, 1922–
1
925.
n-p
5%
l, m
6
.
(a) Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.;
Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Angew.
Chem., Int. Ed. 2006, 45, 7736–7739. (b) Wuitschik, G.; Rogers-
Evans, M.; Buckl, A.; Bernasconi, M.;Märki, M.; Godel, T.; Fischer,
H.;Wagner, B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.;
Schweizer, W. B.; Müller, K.; Carreira, E. M. Angew. Chem., Int. Ed.
2008, 47, 4512–4515. (c) Wuitschik, G.; Carreira, E. M.; Wagner, B.;
Fischer, H.; Parrilla, I.; Schuler, F.; Roger-Evans, M.; Müller, K. J.
Med. Chem. 2010, 53, 3227–3246. (d) Burkhard, J. A.; Guérot, C.;
Knust, H.; Carreira, E. M. Org. Lett. 2012, 14, 66–69. (e) Li, D. B.;
Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2011, 13, 6134–6136.
4
37%
2
18
17
Scheme 2. Preparation of compound 2. Reagents and conditions: (a) NaH, 4-
o
bromo-1-butene, THF, 80 C; (b) TFA, CH
2
Cl
2
; (c) benzyl bromide, K
2
CO
3
,
CH
3
CN; (d) LiAlH
4
, THF; (e) TBSCl, imidazole, CH
2
Cl
2
; (f) NBS, CH
3
CN,
o
o
rt; (g) TBAF, THF, 60 C; (h) I
2
, NaHCO
3
, CH
3
CN, then NaOAc, 60 C; (i)
o
Pd/C, H
DMAP, CH
CH Cl ; (o) NaClO
HCl in dioxane.
2
, EtOH; (j) K
2
CO
3
, MeOH; (k) Boc
2
O, toluene, 90 C; (l) TsCl,
(f) Li, D. B.; Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2013, 15,
o
2
Cl
2
; (m) TBAF, THF, 60 C; (n) Dess-Martin periodinane,
4766–4769. (g) Burkhard, J.A.; Wuitschik, G.; Plancher, J.; Roger-
Evans, M.; Carreira, E. Org. Lett. 2013, 17, 4312–4315. (h) Zheng,
Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24,
2
2
2 2 3 2 2
, NaH PO ∙2H O, 2-methyl-2-butene, t-BuOH/H O; (p)
3
673–3682.
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
0257–10274.
In summary, the first synthesis of two novel bridged amino
acid derivatives 1 and 2 was achieved. The synthetic strategy
here featured a halogen-mediated ring closure to construct the
pyrrolidine ring first, and then an intramolecular etherification
reaction to afford the morpholine ring. The synthetic methods
discussed herein are highly reproducible and the final amino
acids 1 and 2 or their protected intermediates may have wide
applications. Considering their distinct 3D-shape, these modules
may be considered as conformationally constrained amino acids,
7.
1
8
.
Smith, D. A. et al Metabolism, Pharmacokinetics and Toxicity of
Functional Groups: Impact of Chemical Building Blocks on ADMET.
Chapter 3, Caboxylic acids and their bioisosteres, Kalgutkar, A. S.;
Daniels, J. L. RSC publishing, Cambridge, 2010, p99.
The calculation was done by MOE (2013.08 version developed by
Chemical Computing Group) LowModeMD method.
9.
18
1
0. (a) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Chem.
Biol. Drug Des. 2014, 83, 450–461; (b) Richie, T. J.; Macdonald, S.
J.; Young, R. J.; Pickett, S. D. Drug Discov. Today 2009, 14, 1011–
1020. (c) Lovering, F.; Bikker, J.; Humblet, C. J. Med.Chem. 2009,
1
9
a very useful class of building blocks in peptidomimetics . In