C O M M U N I C A T I O N S
Table 2. Scope of Substrates in Cascade Reaction of 1 with 5a
Catalyzed by (R)-3d (eq 1)
to provide a rapid increase in molecular complexity. Further
investigations of this cascade transformation are currently underway
in our laboratory to elucidate the origin of the stereoselectivity and
to construct more complex heterocyclic systems.
a
entry
1 (R1)
yield (%)
trans:cis
ee (%)b,c
ee (%)b,d
1
2
1b: p-Br-C6H4-
1c: p-Me-C6H4-
1d: 2-furyl
>99
>99
76
70
84
94:6
95:5
88:12
95:5
88:12
94:6
99
98
99
97
98
97
23
4
e
Acknowledgment. This work was supported by JSPS for a
Grant-in-Aid for Scientific Research (B) (Grant No. 17350042) and
The Tokuyama Science Foundation. We also acknowledge the JSPS
Research Fellowship for Young Scientists (K.S.) from the Japan
Society for the Promotion of Sciences.
3
14
36
e
4
5
1e: Ph-CHdCH-
e
f
1f: MeO2C-
ND
e
6
1g: c-C6H11-
68
48
a
Unless otherwise noted, all reactions were carried out with 0.10 mmol
of 1, 0.21 mmol of 5a, and 0.002 mmol of (R)-3d (2 mol %) in 1.0 mL of
Supporting Information Available: Representative experimental
procedure, spectroscopic data for cascade reaction products (8),
determination of relative stereochemistry of 8, and absolute stereo-
chemistry of 8a. This material is available free of charge via the Internet
at http://pubs.acs.org.
b
CH2Cl2 at 0 °C for 5 h. Enantiomeric excess was determined by chiral
c
d
e
HPLC analysis. % ee of trans-8. % ee of cis-8. Reaction was carried
f
out using 0.005 mmol of (R)-3d (5 mol %). Not determined % ee.
respective of the Ar substituent of the chiral catalysts (3) (entries
1-4). Interestingly, the simple phenyl-substituted catalyst (3b) also
References
gave high enantioselectivity for the major trans-isomer (entry 2).
In contrast, the diastereoselectivity was affected by the Ar substit-
uents; among the catalysts examined, the para-biphenyl-substituted
catalyst (3d) exhibited the highest diastereoselectivity (entry 4).
Further optimization of reaction conditions by changing either
solvents or reaction temperature was performed using 3d (entries
(
1) For a recent review, see: Enders, D.; Grondal, C.; H u¨ ttl, M. R. M. Angew.
Chem., Int. Ed. 2007, 46, 1570-1581.
(2) For reviews on chiral Brønsted acid catalysis, see: (a) Pihko, P. M. Angew.
Chem., Int. Ed. 2004, 43, 2062-2064. (b) Taylor, M. S.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2006, 45, 1520-1543. (c) Akiyama, T.; Itoh, J.;
Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999-1010. (d) Connon, S. J.
Angew. Chem., Int. Ed. 2006, 45, 3909-3912.
(3) For selected examples of organocatalytic tandem reactions, see: (a)
5
-8). As a result, nearly enantiopure piperidine derivatives (8a)
were obtained with high diastereoselectivity in CH Cl at 0 °C (entry
).
To investigate the scope of the present cascade transformations,
Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004,
1
26, 5962-5963. (b) Marigo, M.; Schulte, T.; Franzen, J.; Jørgensen, K.
2
2
A. J. Am. Chem. Soc. 2005, 127, 15710-15711. (c) Casas, J.; Engqvist,
8
M.; Ibrahem, I.; Kaynak, B.; C o´ rdova, A. Angew. Chem., Int. Ed. 2005,
4
4, 1343-1345. (d) Yang, J. W.; Hechavarria, Fonseca, M. T.; List, B. J.
Am. Chem. Soc. 2005, 127, 15036-15037. (e) Huang, Y.; Walji, A. M.;
Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051-
15053. (f) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128,
the reaction of 5a with a series of aldimines (1) was examined
using (R)-3d. Representative results are summarized in Table 2. It
should be emphasized that, in most cases, one stereoisomer was
formed exclusively from among the eight possible stereoisomers
consisting of four pairs of enantiomers. Excellent enantioselectivities
along with high diastereoslectivities were attained using aromatic
aldimines (1b and 1c), regardless of their electronic nature (entries
4
3
8-49. (g) Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2006, 128,
928-3930. (h) Enders, D.; H u¨ ttl, M. R. M.; Grondal, C.; Raabe, G.
Nature 2006, 441, 861-863. (i) Brandau, S.; Maerten, E.; Jørgensen, K.
A. J. Am. Chem. Soc. 2006, 128, 14986-14991. (j) Zu, L.; Wang, J.; Li,
H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036-
1037.
(4) (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
(
b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004,
1
1
and 2). Heteroaromatic and R,â-unsaturated aldimines (1d and
e) were also encouraging, giving the corresponding products (8d
126, 11804-11805. (c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am.
Chem. Soc. 2005, 127, 9360-9361. (d) Terada, M.; Machioka, K.;
Sorimachi, K. Angew. Chem., Int. Ed. 2006, 45, 2254-2257. (e) Terada,
M.; Sorimachi, K.; Uraguchi, D. Synlett 2006, 133-136. (f) Gridnev, I.
D.; Kouchi, M.; Sorimachi, K.; Terada, M. Tetrahedron Lett. 2007, 48,
and 8e) in acceptable yields (entries 3 and 4). Moreover, the
glyoxylate-derived aldimine (1f) could be transformed to the highly
functionalized piperidine derivative (8f) in excellent enantioselec-
tivity (entry 5). An aliphatic aldimine (1g) was also applicable to
the present reaction, giving the product (8g) in high stereoselectivity
4
97-500. (g) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129,
292-293. (h) Terada, M.; Yokoyama, S.; Sorimachi, K.; Uraguchi, D.
AdV. Synth. Catal. 2007, in press.
(
5) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int.
Ed. 2004, 43, 1566-1568. (b) Rowland, G. B.; Zhang, H.; Rowland, E.
B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem. Soc.
(entry 6).
2
005, 127, 15696-15697. (c) Storer, R. I.; Carrera, D. E.; Ni, Y.;
The high enantio- and diastereoselectivities observed can be
MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84-86. (d) Seayad,
J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086-1087. (e)
Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem., Int. Ed. 2006, 45,
9
attributed to the double asymmetric induction arising from the
matched combination between the optically active aldimine inter-
mediates (6) and (R)-3. As shown in eq 1, catalysis of the cascade
reaction by biphenol-derived phosphoric acid (9) resulted in 4,6-
trans selectivity, although the selectivity was moderate. The
observed 4,6-trans diastereofacial selectivity induced by the chirality
of 6 is identical to the stereochemical outcome in enantioselective
catalysis, where (R)-3 preferentially directs attack of both the initial
aldimines (1) and 6 onto the si face, giving a 4,6-trans relationship
as the predominant relative stereochemistry. It is likely that the
final step of the stereoselective cyclization proceeded under substrate
control rather than enantioselective catalysis by (R)-3, because the
reaction catalyzed by 9 also affords only two of the possible four
diastereomers.
2
617-2619. (f) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew.
Chem., Int. Ed. 2006, 45, 3683-3686. (g) Itoh, J.; Fuchibe, K.; Akiyama,
T. Angew. Chem., Int. Ed. 2006, 45, 4796-4798. (h) Nakashima, D.;
Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626-9627. (i) Akiyama,
T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070-13071.
(j) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem.
Soc. 2006, 128, 14802-14803. (k) Kang, Q.; Zhao, Z.-A.; You, S.-L. J.
Am. Chem. Soc. 2007, 129, 1484-1485. (l) Li, G.; Liang, Y.; Antilla, J.
C. J. Am. Chem. Soc. 2007, 129, 5830-5831. (m) Rueping, M.;
Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. Chem., Int.
Ed. 2007, 46, 2097-2100. (n) Yamanaka, M.; Itoh, J.; Fuchibe, K.;
Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756-6764.
(6) (a) Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem., Int. Ed.
2
004, 43, 1679-1681. (b) Matsubara, R.; Nakamura, Y.; Kobayashi, S.
Angew. Chem., Int. Ed. 2004, 43, 3258-3260. (c) Matsubara, R.; Vital,
P.; Nakamura, Y.; Kiyohara, H.; Kobayashi, S. Tetrahedron 2004, 60,
9
769-9784. (d) Fossey, J. S.; Matsubara, R.; Vital, P.; Kobayashi, S.
Org. Biomol. Chem. 2005, 3, 2910-2913. (e) Matsubara, R.; Kawai, N.;
Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 3814-3816. (f) Kiyohara,
H.; Matsubara, R.; Kobayashi, S. Org. Lett. 2006, 8, 5333-5335.
In summary, we have developed an efficient and highly diastereo-
and enantioselective tandem aza-ene type reaction/cyclization
cascade, featuring a chiral monophosphoric acid catalyst, for a one-
pot entry to piperidine derivatives. With the control of three
stereogenic centers, the cascade transformations can be widely
applied using simple enecarbamates and a broad range of aldimines
(7) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633-
640.
(
8) The relative stereochemistries were determined by NOE experiments.
(9) Masamune, S.; Choy. W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int.
Ed. Engl. 1985, 24, 1-31.
JA0739584
J. AM. CHEM. SOC.
9
VOL. 129, NO. 34, 2007 10337