2248 Bull. Korean Chem. Soc. 2011, Vol. 32, No. 7
Abolghasem Davoodnia et al.
4. Dömling, A.; Ugi, I. Andew. Chem., Int. Ed. 2000, 39, 3168.
5. Gordeev, M. F.; Patel, D. V.; Gordon, E. M. J. Org. Chem. 1996,
61, 924.
6. Sausins, A.; Duburs, G. Heterocycles 1988, 27, 269.
7. Coburn, R. A.; Wierzba, M.; Suto, M. J.; Solo, A. J.; Triggle, A.
M.; Triggle, D. J. J. Med. Chem. 1988, 31, 2103.
8. Godfraind, T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38,
321.
9. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.;
Howlett, S. E.; Knaus, E. E. J. Med. Chem. 1995, 38, 2851.
10. Jin, T. S.; Zhang, J. S.; Guo, T. T.; Wang, A. Q.; Li, T. S. Synthesis
2004, 12, 2001.
11. Chandrasekhar, S.; Rao, Y. S.; Sreelakshmi, L.; Mahipal, B.;
Reddy, C. R. Synthesis 2008, 11, 1737.
12. Venkatesan, K.; Pujari, S. S.; Srinivasan, K. V. Synth. Commun.
2009, 39, 228.
Figure 1. Reusability of the catalyst for model reaction.
13. Das, B.; Thirupathi, P.; Mahender, I.; Saidi Reddy, V.; Rao, Y. K.
J. Mol. Catal. A: Chem. 2006, 247, 233.
drawing substituents and gave the products 1,8-dioxodeca-
hydroacridines in high yields. However, when the mixture of
aromatic amines substituted with electron-withdrawing
group, dimedone and aromatic aldehydes was heated under
14. Balalaie, S.; Chadegani, F.; Darviche, F.; Bijanzadeh, H. R. Chin.
J. Chem. 2009, 27, 1953.
15. Shen, W.; Wang, L. M.; Tian, H.; Tang, J.; Yu, J. J. J. Fluorine
Chem. 2009, 130, 522.
36
optimized reaction conditions, 1,8-dioxooctahydroxanthenes
16. Mora, A.; Suarez, M.; Ochoa, E.; Morales, A.; del Bosque, J. R. J.
Heterocycl. Chem. 1995, 32, 235.
were formed (Table 3, entries 17 and 18). Based on Wang’s
15
report, aromatic amines substituted with electron-withdraw-
17. Tu, S.; Miao, C.; Gao, Y.; Fang, F.; Zhuang, Q.; Feng, Y.; Shia, D.
Synlett 2004, 2, 255.
ing group did not have enough nucleophilicity to produce
1,8-dioxodecahydroacridines.
18. Okuhara, T. Chem. Rev. 2002, 102, 3641.
19. Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.;
Hayashi, S.; Domen, K. Angew. Chem., Int. Ed. 2004, 43, 2955.
20. Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J. N.; Domen, K.;
Tatsumi, T.; Hara, M.; Hayashi, S. Chem. Mater. 2006, 18, 3039.
21. Zali, A.; Shokrolahi, A.; Keshavarz, M. H.; Zarei, M. A. Acta
Chim. Slov. 2008, 55, 257.
Reusability of the catalyst was also investigated. For this
purpose, the same model reaction was again studied under
optimized conditions. After the completion of the reaction,
the reaction mixture was cooled to room temperature, and
hot ethanol was added. The catalyst was separated by simple
filtration, dried at 60 °C under vacuum for 1 h, and reused
for a similar reaction. As shown in Figure 1, the catalyst
could be reused at least three times without significant loss
of activity.
22. Zhou, L.; Liu, K.; Hua, W. M.; Yue, Y. H.; Gao, Z. Chin. J. Chem.
2009, 30, 196.
23. Rahimizadeh, M.; Davoodnia, A.; Heravi, M. M.; Bakavoli, M.
Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 2923.
24. Bakavoli, M.; Davoodnia, A.; Rahimizadeh, M.; Heravi, M. M.
Mendeleev Commun. 2006, 1, 29.
In conclusion, we have reported a simple new catalytic
method for the synthesis of 1,8-dioxodecahydroacridines by
one-pot three-component reaction of dimedone, aromatic
aldehydes, and ammonium acetate or aromatic amines using
CBSA as an efficient, reusable, and green heterogeneous
catalyst. The catalyst can be recycled after a simple work-up,
and used at least three times without substantial reduction in
its catalytic activity. High yields, short reaction times and
easy work-up are just a few of the advantages of this proce-
dure.
25. Davoodnia, A.; Bakavoli, M.; Pooryaghoobi, N.; Roshani, M.
Heterocycl. Commun. 2007, 13, 323.
26. Davoodnia, A.; Roshani, M.; Saleh-Nadim, E.; Bakavoli, M.;
Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1327.
27. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini,
N. Chin. Chem. Lett. 2007, 18, 1483.
28. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin.
Chem. Lett. 2008, 19, 525.
29. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-
Hoseini, N. Monatsh. Chem. 2009, 140, 1499.
30. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-
Hoseini, N. Monatsh. Chem. 2010, 141, 867.
31. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini,
N. Synth. Commun. 2010, 40, 2588.
Acknowledgments. The authors are thankful to Islamic
Azad University, Mashhad Branch for financial support.
32. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22,
7197.
References
33. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N.
Chin. Chem. Lett. 2010, 21, 550.
1. Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim, Germany,
34. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-
Hoseini, N. Chin. Chem. Lett. 2010, 21, 1.
2005.
2. Bagley, M. C.; Lubinu, M. C. Top. Heterocycl. Chem. 2006, 31.
3. Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem.
2004, 4957.
35. Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
36. Niknam, K.; Panahi, F.; Saberi, D.; Mohagheghnejad, M. J.
Heterocycl. Chem. 2010, 47, 292.