10.1002/ejic.201900524
European Journal of Inorganic Chemistry
FULL PAPER
138.5 (m), 143.4 (s), 154.2 (m). Anal. Calc. for C54H42IP3Sn: C, 63.00; H,
4.11. Found: C, 62.74; H, 4.30.
Organometallic, and Polymer Chemistry, John Wiley & Sons: New
York, 2000, pp. 97.
[2]
[3]
a) C. Breliére, F. Carré, R. J. P. Corriu, G. Royo, Organometallics
1988, 7, 1006 ; (b) F. Carré, C. Chuit, R. J. P. Corriu, A. Mehdi, C.
Reyé, Angew. Chem. Int. Ed. Engl. 1994, 33, 1097 ; c) C. Breliére, F.
Carré, R. J. P. Corriu, G. Royo, M. W. C. Man, Organometallics 1994,
13, 307 ; d) F. Carré, C. Chuit, R. J. P. Corriu, A. Fanta, A. Mehdi, C.
Reyé, Organometallics 1995, 14, 194.
Structure Determination by X-ray Diffraction. Single crystals suitable
for X-ray diffraction analysis were obtained as described above.
Diffraction intensity data were collected with a Rigaku/MSC Mercury
CCD diffractometer at 200 K(2), and
a semiempirical multi-scan
absorption[22] correction was performed. The space groups were chosen
based on the systematic absences in the diffraction data. The structures
were solved using SIR97[23] by subsequent difference Fourier synthesis,
and refined by full matrix least-squares procedures on F2. All non-
hydrogen atoms were refined with anisotropic displacement coefficients.
The hydrogen atoms were treated as idealized contributions and refined
in rigid group model. All software and sources of scattering factors are
contained in the SHELXL97 program package.[24] CCDC 1425640,
1425641, and 1425642 contain supplementary crystallographic data for
this paper. These data can be obtained free of charge from the
a) N. Auner, R. Probst, F. Hahn, E. Herdweck, J. Organomet. Chem.
1993, 459, 25; b) A. Kawachi, Y. Tanaka, K. Tamao, Organometallics
1997, 16, 5102; c) M. T. Whited, N. P. Mankad, Y. Lee, P. F. Oblad, J.
C. Peters, Inorg. Chem. 2009, 48, 2507; d) R. Herrmann, T. Braun, S.
Mebs Eur. J. Inorg. Chem. 2014, 4826-4835; e) E. Wächtler, S.
Wahlicht, S. H. Privér, M. A. Bennett, B. Gerke, R. Pöttgen, E.
Brendler, R. Gericke, J. Wagler, S. K. Ghargava, Inorg. Chem. 2017,
56, 5316.
[4]
[5]
a) S. Dostal, S. J. Stoudt, P. Fanwick, W. F. Sereatan, B. Kahr, J. E.
Jackson, Organometallics 1993, 12, 2284; b) J. Kobayashi, K. Ishida,
T. Kawashima, Silicon Chem. 2002, 1, 351; c) K. Iwanaga, J.
Kobayashi, T. Kawashima, N. Takagi, S. Nagase, Organometallics,
2006, 25, 3388.
Cambridge
Crystallographic
Data
Centre
via
Density Functional Theory Calculations. Gaussian09 was employed
for all calculations here.[25] The geometry was optimized by the DFT
method with the PBE-D3 functional in C1 symmetry. For Sn and I atom,
the Stuttgart−Dresden−Bonn (SDD) basis set attaching two additional d
polarization functions[26] was used with the corresponding effective core
potentials (ECPs). Usual 6-311G(d,p) basis sets were employed for C,
H, P, and usual 6-311+G(d,p) basis sets were employed for F, Cl, Br.
Key geometric data for 3b, 4b, and 5c agreed with the experimental
values in the solid state (see Table S4 in the SPI). The polarizable
continuum model (PCM)[27] was used to calculate solvation free
energies, where the gas-phase optimized geometries were employed.
Thermal correction and entropy contributions to the Gibbs energy at
298.15 K were taken from the frequency calculation. Donor-acceptor
interactions were analyzed by second-order perturbation theory in
Natural Bond Orbital (NBO) method.[28]
a) A. Ramírez-Jiménez, E. Gómez, S. Hernández, J. Organomet.
Chem. 2009, 694, 2965; b) A. Deák, L. Radics, A. Kálmán, L. Párkányi,
I. Haiduc, Eur. J. Inorg. Chem. 2001, 2849; c) A. González, E. Gómez,
A. Cortés-Lozada, S. Hernández, T. Ramírez-Apan, A. Nieto-
Camacho, Chem. Pharm. Bull. 2009, 1, 5.
[6]
[7]
a) H. Kameo, T. Kawamoto, S. Sakaki, H. Nakazawa, Organometallics
2014, 33, 5960; b) H. Kameo, T. Kawamoto, D. Bourissou, S. Sakaki,
H. Nakazawa Organometallics 2014, 33, 6557.
Lewis acidity of {o-(Ph2P)C6H4}3E(F) (E = Si, Ge, Sn(1)) were studied
by evaluating the interactions with Group 11 transition metals; a) H.
Kameo, T. Kawamoto, D. Bourissou, S. Sakaki, H. Nakazawa,
Organometallics 2015, 34, 1440; b) H. Kameo, H. Nakazawa, Chem
Rec. 2017, 17, 268.
[8]
Examples of hypercoordinate group 14 element compounds with
phosphorous donor are limited even in pepta- and hexacoordinate
species. See a) A. Tzschach, K. Jurkschat, Comm. Inorg. Chem. 1983,
3, 35-50; b) H. Weichmann, J. Organomet. Chem. 1984, 262, 279; c)
H. Weichmann, J. Menunier-Pier, M. van Meerssche, J. Organomet.
Chem. 1986, 309, 267; d) K. Jurkschat, Z. Tzschach, H. Weichmann,
P. Rajczy, M. A. Mostafa, L. Korecz, K. Burger, Inorg. Chim. Acta
1991, 179, 83; e) J. Grobe, W. Hildebrandt, R. Martin, A. Walter, Z.
Anorg Allg Chem. 1991, 592, 121; f) S. Hoppe, H. Weichmann, K.
Jurkschat, C. Schneider-Koglin, M. Dräger, J. Organomet. Chem.
1996, 505, 63; g) H. H. Karsch, B. Deubelly, U. Keller, F. Bienlein, R.
Richter, P. Bissinger, M. Heckel, G. Muller, Chem. Ber. 1996, 129,
759; h) U. Baumeister, H. Hartung, A. Krug, K. Merzweiler, T. Schulz,
C. Wagner, H. Weichmann, Z. Anorg. Allg. Chem. 2000, 626, 2185; i)
K. A. Clark, T. A. George, T. J. Brett, C. R. Ross II, R. K. Shoemaker,
Inorg. Chem. 2000, 39, 2252; j) C. H. Yoder, L. A. Margolis, J. M.
Horne, J. Organomet. Chem. 2001, 633, 33; k) A. Toshimitsu, T. Saeki,
K. Tamao, J. Am. Chem. Soc. 2001, 123, 9210; l) D. Quintard, M.
Keller, B. Breit, Synthesis 2004, 905; m) P. Gualco, T.-P. Lin, M.
Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, L. M. Pérez, A.
Amgoune, L. Maron, F. P. Gabbaï, D. Bourissou, Angew. Chem. Int.
Ed. 2009, 48, 9892; n) T.-P. Lin, P. Gualco, S. Ladeira, A. Amgoune,
D. Bourissou, F. P. Gabbaï, C. R. Chim. 2010, 13, 1168; o) H. Kameo,
S. Ishii, H. Nakazawa, Organometallics 2012, 31, 2212; p) T. Sanji, K.
Naito, T. Kashiwabara, M. Tanaka, Heteroatom Chem. 2012, 23, 520;
q) H. Kameo, S. Ishii, H. Nakazawa, Dalton Trans. 2012, 41, 11386; r)
H. Kameo, H. Nakazawa, R. H. Herber, J. Mol. Struct. 2013, 1054-
1055, 321; s) P. Gualco, S. Mallet-Ladeira, H. Kameo, H. Nakazawa,
M. Mercy, L. Maron, A. Amgoune, D. Bourissou, Organometallics 2015,
34, 1449; t) H. Kameo, T. Kawamoto, S. Sakaki, D. Bourissou, H.
Nakazawa, Chem. Eur. J. 2016, 22, 2370; u) H. Kameo, K. Ikeda, D.
Acknowledgments
H.K. acknowledges the financial support from the Foundation
for Interaction in Science & Technology and a Grant-in-Aid for
Scientific Research (C) (No. 18K05151). S.S. wishes to
acknowledge the support from the Ministry of Education,
Culture, Science, Sport and Technology through Grants-in-Aid
of Specially Promoted Science and Technology (No. 22000009)
and Japan Science and Technology Cooperation (CREST
‘Establishment of Molecular Technology towards the Creation
of New Functions’ Area).
Keywords: tin • heptacoordination • phosphorus • DFT
calculation • X-ray analysis
[1]
a) K.-y. Akiba, in Chemistry of Hypervelent Compounds, John Wiley &
Sons: New York, 1999; b) Y. I. Baukov, S. N. Tandura, Hypervalent
Compound of Organic Germanium, Tin and Lead derivatives; in The
chemistry of Organic Germanium, Tin and Lead Compounds, Vol. 2
(Ed.: Z. Rappoport), Wiley, Chiichester, 2002, pp. 963; c) D. Kost, I.
Kalikhman, Hypervalent Silicon Compounds; in The Chemistry of
Organic Silicon Compounds, Vol.2 (Eds.: Z. Rappoport, Y. Apeloig),
Wiley, New York, 1998, pp. 1339; d) M. A. Brook, in Silicon in Organic,
This article is protected by copyright. All rights reserved.