2450 J. Phys. Chem. A, Vol. 109, No. 11, 2005
Lewis et al.
The dynamics conjugate base formation and decay for
43SNOH are strikingly similar to those for 44SNOH (Table
3). The weaker fluorescence from 43SNOH* in MW and
43SNO-* in MW-KOH when compared to 44SNOH* and
44SNO-* is a consequence of lower fluorescence rate constants
for the 3- vs 4-hydroxystilbenes.
Unlike 44SNOH, 43SNOH does not undergo rapid photo-
isomerization in MW (Figure 3). Thus the dominant decay
pathway for 43SNO-* must be internal conversion to its ground
state (Scheme 1) with a rate constant kic ∼ 4 × 1010 s-1. Rapid
internal conversion has been reported for a number of push-
pull substituted stilbenes.25 The transient dynamics for 33SNOH
are similar to those for 43SNOH, suggesting similar rate
constants for the formation and nonradiative decay of its
conjugate base.
Acknowledgment. Funding for this project was provided
by grants from the National Science Foundation (CHE-0100596
and CHE-0400663).
Supporting Information Available: ZINDO-calculated
singlet states and Lippert-Mataga Plots for the cyanohydroxy-
stilbenes and transient absorption data for the 3-cyanohydroxy-
stilbenes. This material is available free of charge via the Internet
References and Notes
(1) (a) Martynov, I. Y.; Demyashkevich, A. B.; Uzhinov, B. M.;
Kuz’min, M. G. Russ. Chem. ReV. Usp. Khim. 1977, 46, 1-15. (b) Arnaut,
L. G.; Formosinho, S. J. J. Photochem. Photobiol., A 1993, 75, 1-20. (c)
Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19-27. (d)
Agmon, N. J. Phys. Chem. A 2005, 109, 13-35.
(2) Webb, S. P.; Yeh, S. W.; Philips, L. A.; Tolbert, M. A.; Clark, J.
H. J. Am. Chem. Soc. 1984, 106, 7286-7288.
(3) (a) Webb, S. P.; Philips, L. A.; Yeh, S. W.; Tolbert, L. M.; Clark,
J. H. J. Phys. Chem. 1986, 90, 5154-5164.
(4) Tolbert, L. M.; Haubrich, J. E. J. Am. Chem. Soc. 1990, 112, 8163-
8165. (b) Tolbert, L. M.; Haubrich, J. E. J. Am. Chem. Soc. 1994, 116,
10593-10600.
(5) Pines, E.; Pines, D.; Barak, T.; Magnes, B.-Z.; Tolbert, L. M.;
Haubrich, J. E. Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 511-517.
(6) Fo¨rster, T. Z. Elektrochem. 1950, 54, 531-535.
(7) Weller, A. Prog. React. Kinet. 1961, 1, 187-214.
(8) Tolbert, L. M. Acc. Chem. Res. 1986, 19, 268-273.
(9) (a) Genosar, L.; Cohen, B.; Huppert, D. J. Phys. Chem. A 2000,
104, 6689-6698. (b) Rini, M.; Magnes, B.-Z.; Pines, E.; Nibbering, E. T.
J. Science 2003, 301, 349-352.
(10) Cohen, B.; Leiderman, P.; Huppert, D. J. Lumin. 2003, 102-103,
682-687.
(11) Poizat, O.; Bardez, E.; Buntinx, G.; Alain, V. J. Phys. Chem. A
2004, 108, 1873-1880.
The rate constants for both the formation and decay of 3SO-*
are appreciably slower than those for 43- and 33SNO-* (Table
3), permitting the observation of fluorescence from both 3SOH*
and 3SO-* in aqueous solution. The observation of efficient
photoisomerization for 3SOH in MW (Figure 3) indicates that
3SO-* decays predominantly via CdC torsion rather than
internal conversion (Scheme 1, kt > kic). The relatively long
lifetime of 3SO-* requires that torsion be relatively slow (kt <
2 × 109 s-1) when compared to the rate constant for internal
conversion of 43SNO-*.
Concluding Remarks
The use of fs transient absorption spectroscopy has permitted
investigation of the dynamics of proton transfer for the hydroxy-
stilbenes and their cyano derivatives in methanol-water mixed
solvents. Assignment of their transient absorption spectra is
supported by the use of models for the singlet and its conjugate
base. The short decay times of these photoacids and weak
fluorescence of their conjugate bases renders impractical the
study of their dynamics by transient fluorescence. The ESPT
rates for the cyanohydroxystilbenes 43SNOH and 44SNOH are
comparable to the fastest reported to date11 and the solvent
deuterium isotope effect the smallest reported to date for a
photoacid in water or methanol-water.5 Both the rate constants
for ESPT and the isotope effect approach the theoretical limits
for water-mediated proton transfer.
The initial objective of our studies of the hydroxystilbenes
was to determine the generality of the “meta effect” for
substituted stilbenes. Amine, methoxy, and hydroxy substituents,
all of which are strongly mesomeric, are found to markedly
increase the stilbene lifetime when located in the meta, but not
in the para position.13,14,24 This manifestation of the generalized
“meta effect”, as initially formulated by Zimmerman,38 is
attributed to selective stabilization of the planar stilbene singlet
state vs the twisted singlet, resulting in an enhanced barrier for
CdC torsion. The present results establish that the behavior of
both the cyanohydroxystilbenes and their conjugate bases are
subject to the meta effect. In nonaqueous solution the singlet
states of 43SNOH and 33SNOH have relatively long singlet
lifetimes and high fluorescence quantum yields, indicative of
high CdC torsional barriers; whereas both 44SNOH and
34SNOH have short singlet lifetimes and low fluorescence
quantum yields, indicative of low CdC torsional barriers. The
excited conjugate base 43SNO-* decays via internal conversion,
whereas 44SNO-* decays via CdC torsion. Thus CdC torsional
barriers for the conjugate bases parallel those of the neutrals.
As previously observed in our studies of the cyanoamino-
stilbenes,25 it is the position of the hydroxy and not the cyano
substituent that determines the CdC barrier and thus the excited-
state behavior of the cyanohydroxystilbenes.
(12) Solntsev, K. M.; Sullivan, E. N.; Tolbert, L. M.; Ashkenazi, S.;
Leiderman, P.; Huppert, D. J. Am. Chem. Soc. 2004, 126, 12701-12708.
(13) Lewis, F. D.; Crompton, E. M. J. Am. Chem. Soc. 2003, 125, 4044-
4045.
(14) Crompton, E. M.; Lewis, F. D. Photochem. Photobiol. Sci. 2004,
3, 660-668.
(15) Lee, B. H.; Marvel, C. S. J. Polym. Sci., Polym. Chem. Ed. 1982,
20, 393-399.
(16) McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968,
24, 2289-2292.
(17) Weigel, W.; Rettig, W.; Dekhtyar, M.; Modrakowski, C.; Beinhoff,
M.; Schlueter, A. D. J. Phys. Chem. A 2003, 107, 5941-5947.
(18) CAChe, 4.4; Fujitsu Limited: Chiba, Japan,
(19) Rybtchinski, B.; Sinks, L.; Wasielewski, M. R. J. Phys. Chem. A
2004, 108, 7497-7505.
(20) Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B
2000, 104, 931-940.
(21) Giaimo, J. M.; Gusev, A. V.; Wasielewski, M. R. J. Am. Chem.
Soc. 2002, 124, 8530-8531.
(22) Data provided as Supporting Information.
(23) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff,
U. T. J. Am. Chem. Soc. 1980, 102, 589-599.
(24) Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. J. Am. Chem. Soc. 1999,
121, 12045-12053.
(25) Lewis, F. D.; Weigel, W. J. Phys. Chem. A 2000, 104, 8146-
8153.
(26) Solntsev, K. M.; Huppert, D.; Agmon, N. J. Phys. Chem. A 1998,
102, 9599-9606. Solntsev, K. M.; Huppert, D.; Agmon, N. J. Phys. Chem.
A 1999, 103, 6984-6997.
(27) Clower, C.; Solntsev, K. M.; Kowalik, J.; Tolbert, L. M.; Huppert,
D. J. Phys. Chem. A 2002, 106, 3114-3122.
(28) Murohoshi, T.; Kaneda, K.; Ikegami, M.; Arai, T. Photochem.
Photobiol. Sci. 2003, 2, 1247-1249.
(29) Waldeck, D. H. Chem. ReV. 1991, 91, 415-436.
(30) Hochstrasser, R. M. Pure Appl. Chem. 1980, 1980, 2683-2691.
(31) Iwata, K.; Hamaguchi, H. Chem. Phys. Lett. 1992, 196, 462-468.
Schultz, S. L.; Qian, J.; Jean, J. M. J. Phys. Chem. A 1997, 101, 1000-
1006.
(32) Pines, D.; Pines, E.; Rettig, W. J. Phys. Chem. A 2003, 107, 236-
242.
(33) Lewis, F. D.; Wu, T.; Liu, X.; Letsinger, R. L.; Greenfield, S. R.;
Miller, S. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 2889-
2902.
(34) Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E. J. Photochem.
Photobiol. A. 1997, 111, 87-96.