DOI: 10.1039/C3CC46570E
Page 3 of 3
ChemComm
coupling reaction.
product, propargy ether, was funcionallized without isolation,
which shows that this reaction is clean enough to effectively
undergo further transformation.
3
5
This work was supported by the Ministry of Education,
Culture, Sports, Science and Technology (Japan) and the Shorai
Foundation for Science and Technology.
Scheme 4. Reaction of Aldehyde 6 with Alkyne 2c
A plausible reaction mechanism is shown in Scheme 5.
ZnCl acivates the acetal to give zinc species 7, which interacts
Notes and references
5
0
5
2
a
Department of Applied Chemistry, Graduate School of Engineering,
with an alkyne and leads to the formation of alkynylzinc 8. The
alkynylzinc 8 reacts with acetal 1 via an oxonium cation and
zincate complex to afford the desired product 3 along with the
regeneration of 7. The kinetic study of the coupling was carried
out by GC (See Supporting Information) and showed that the
reaction was dependent on the first order of each component (v
4
4
5
5
6
6
7
7
8
8
9
0
5
0
5
0
5
0
5
0
5
0
Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
E-mail: yasuda@chem.eng.osaka-u.ac.jp; Fax: +81-6-6879-7387;
Tel: +81-6-6879-7386
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI: 10.1039/b000000x/
1
‡
Footnotes should appear here. These might include comments relevant
-
2
-2 2 -1
=
k[1a][2a][catalyst], k; 4.06 x 10 mol L s , T = 130 °C). The
to but not central to the matter under discussion, limited experimental and
spectral data, and crystallographic data.
result and implication of containing an alkynylzinc as shown in
Scheme 3 might indicate that the interaction between an acetal
and alkynylzinc 8 is a rate-limiting step.
1
For recent reviews of alkynylation of carbonyl compounds, see; (a) S.
Guillarme, K. Plé, A. Banchet, A. Liard, A. Haudrechy, Chem. Rev.,
1
2
3
006, 106, 2355. (b) B. M. Trast, A. H. Weiss, Adv. Synth. Catal., 2009,
51, 963. For a transition metal catalyzed cross coupling, see; (c) K,
Sonogashira, J. Organomet. Chem., 2002, 653, 46. (d) E.-i. Negishi, L.
Anastasia, Chem. Rev., 2003, 103, 1979. (e) H. Doucet, J.-C. Hierso,
Angew. Chem. Int. Ed., 2007, 46, 834. For a review of electrophilic
alkynylation, see; (f) J. P. Brand, J. Waser, Chem. Soc. Rev., 2012, 41,
4
165.
2
3
(a) K. C. Nicolau, W.-M. Dai, Angew. Chem., 1991, 103, 1453; Angew.
Chem. Int. Ed., 1991, 30, 1387. (b) M. E. Maier, Synlett, 1995, 13. (c)
A. L. K. Shi Shu, R. R. Tykwinski, Angew. Chem. Int. Ed., 2006, 45,
1
034. (d) R. E. Minto, B. J. Blacklock, Prog. Lipid. Res., 2008, 47, 233.
(e) B. W. Gung, C. R. Chimie, 2009, 12, 489.
(a) A. Harriman, R. Ziessel, Chem. Commun., 1996, 1707. (b) N. J.
Long, C. K. Williams, Angew. Chem. Int. Ed., 2003, 42, 2586. (c) K.
A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Cood. Chem.
Rev., 2011, 255, 2530. (d) K. A. Green, M. P. Cifuentes, M. Samoc,
M. G. Humphrey, Cood. Chem. Rev., 2011, 255, 2025. (e) G. Bottari,
D. D. Díaz, T. Torres, J. Porphyrins Phthalocyanines, 2006, 10, 1083.
(f) F. Silvestri, A. Marrocchi, Int. J. Mol. Sci., 2010, 11, 1471.
4
5
6
G. Wu, M. Huang, Chem. Rev., 2006, 106, 2596.
Scheme 5. Plausible Reaction Mechanism
S. E. Denmark, M. H. Ober, Aldrichimica Acta, 2003, 36, 75.
S. Pascual, A. M. Echavarren, In Tin Chemistry; A. G. Davies, Ed.;
John Wiley & Sons Ltd.: Chichester, 2008; pp 579-606.
J. Jiao, Y. Nishihara, J. Organomet. Chem., 2012, 721-722, 3.
(a) N. K. Anand, E. M. Carreira, J. Am. Chem. Soc., 2001, 123, 9687.
The produced propargyl ether 3aa was found to subsequently
react with allylchlorosilane 10 in a one-pot treatment, where
the allylation was completed in 30 min at room tempelature,
yielding 1,5-enyne 11 (Scheme 6). The isolated 3aa did not
7
8
2
0
(b) R. Takita, Y. Fukuta, R. Tsuji, T. Ohshima, M. Shibasaki, Org.
Lett., 2005, 7, 1363. (c) R. Takita, K. Yakura, T. Ohshima, M.
Shibasaki, J. Am. Chem. Soc., 2005, 127, 13760.
K. Kiyokawa, N. Tachikake, M. Yasuda, A. Baba, Angew. Chem. Int.
Ed., 2011, 50, 10393.
ZnBr catalyzed reaction of acetals with acetyl chloride was reported.
2
See: M. A. Berliner, K. Belecki, J. Org. Chem., 2005, 70, 9618.
(a) C. Li, F. Mo, W. Li, J. Wang, Tetrahedron Lett., 2009, 50, 6053.
react with 10 in the absence of ZnCl
2
, which apparently
9
1
1
suggested the catalyst role of ZnCl
OMe moiety to allyl one.
2
in the substitution of the
2
5
0
1
(b) M. Zhang, Y. Wang, Y. Yang, X. Hu, Adv. Synth. Catal., 2012, 354,
981.
1
1
2
3
P. Maity, H. D. Srinivas, M. P. Watson, J. Am. Chem. Soc. 2011, 133,
1
7142.
M. Hayashi, A. Inubushi, T. Mukaiyama, Bull. Chem. Soc. Jpn., 1988,
1, 4037.
14 G. M. R. Tombo, E. Didier, B. Loubinoux, Synlett, 1990, 547.
6
1
5
(a) J.-i. Ito, R. Asai, H. Nishiyama, Org. Lett., 2010, 12, 3862. (a) P.
K. Dhondi, J. D. Chisholm, Org. Lett., 2006, 8, 67. (b) Y. Asano, K.
Hara, H. Ito, M. Sawamura, Org. Lett., 2007, 9, 3901. (c) T. Ishikawa,
T. Mizuta, K. Hagiwara, T. Aikawa, T. Kudo, S. Saito, J. Org. Chem.,
2001, 68, 3702. (e) M. Yamashita, K.-i. Yamada, K. Tomioka, Adv.
Synth. Catal., 2005, 347, 1649. (f) T. Weil, P. R. Schreiner, Eur. J. Org.
Chem., 2005, 2213. Also see; ref 8.
Scheme 5. One-pot Allylation of the Product 3aa
In conclusion, we developed an alkynylation of acetals with
various alkynes including alkyls that can be catalyzed by
95
3
0
2
inexpensive ZnCl . This reaction needs no expensive metal
catalyst, such as gold, nor does it need additives. The
1
1
12
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3