2716
S. Zhu et al. / Tetrahedron Letters 46 (2005) 2713–2716
alternatingly, p–p stacking interactions, electrostatic
attractions and intermolecular hydrogen bonding in
the co-crystals of 1Æ2, work together to increase its melt-
ing point. In complex of 3Æ4 the p–p stacking interac-
tions dominated the electrostatic repulsions of the lone
pair of the imines nitrogen atoms, which forces the mole-
cules to align in a head-to-head manner. The co-crys-
tals 3Æ4, however, have a lower melting point than the
corresponding starting materials, which could be attrib-
uted to the electrostatic repulsion interactions and the
absence of intermolecular hydrogen bonds. The work re-
ported here provides strong evidence for the power of
fluoroaryl–aryl face-to-face interactions as a design mo-
tif for a new class of self-assembling systems. The poten-
tial applications of these new fluoroaldimines structures
are the subject of the on-going investigations.
Watson, P. G.; Zibarev, A. V. Eur. J. Inorg. Chem. 2001,
123–2124; (l) Mitzi, D. B.; Medeiros, D. R.; Malenfant, P.
R. L. Inorg. Chem. 2002, 40, 2134–2145; (m) Clyburne, J. A.
C.; Hamilton, T.; Jenkins, H. A. Cryst. Eng. 2001, 4, 1–9;
2
(
n) Haneline, M. R.; Tsunoda, M.; Gabbai, F. P. J. Am.
Chem. Soc. 2002, 124, 3737–3742; (o) Collings, J. C.;
Roscoe, K. P.; Robins, E. G.; Batsanov, A. S.; Stimson, L.
M.; Howard, J. A. K.; Clark, S. J.; Marder, T. B. New J.
Chem. 2002, 26, 1740–1746; (p) Collings, J. C.; Roscoe, K.
P.; Thomas, R. L.; Batsanov, A.; Simon, L. M.; Howard, J.
A. K.; Marder, T. B. New J. Chem. 2001, 25, 1410–1417.
3. Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021.
. (a) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Dough-
erty, D. A.; Grubbs, R. H. Angew. Chem., Int. Ed. 1997, 36,
248–251; (b) Feast, W. J.; L o¨ venich, P. W.; Pushmann, H.;
Talianic, C. Chem. Commun. 2001, 1, 505–506.
4
5
6
7
. Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.;
Lobokovsky, E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998,
1
20, 3641–3649.
. (a) Vangala, V. R.; Nangia, A.; Lynch, V. M. Chem.
Commun. 2002, 1304–1305; (b) Liu, J.; Murray, E. M.;
Young, V. G., Jr. Chem. Commun. 2003, 1904–1905.
. (a) Williams, J. H. Acc. Chem. Res. 1993, 26, 593–598; (b)
Hernandez-Trujillo, J.; Costas, M.; Vela, A. J. Chem. Soc.,
Faraday Trans. 1993, 2441–2443; (c) Luhmer, M.; Bartnik,
K.; Dejaegere, A.; Bovy, P.; Reisse, J. Bull. Soc. Chim. Fr.
Acknowledgements
We acknowledge the financial support of the National
Nature Science Foundation of China (Nos. 20372077
and 90206005).
1
994, 131, 603–606.
References and notes
8. Crystal data: 1Æ2 (1:1): CCDC No. 241887 C H F N ,
2
6
12 10
2
M = 542.38; monoclinic, spacegroup C2/c, a = 26.736(2),
˚
1
2
. Hunter, C. A. K.; Lawson, R.; Perkins, J.; Urch, C. J. J.
Chem. Soc., Perkin Trans. 2 2001, 651–669.
. (a) Overell, J. S. W.; Pawley, G. S. Acta Crystallogr. Sect. B
b = 7.4098(6), c = 25.102(2) A, a = 90, b = 114.213(2),
˚
3
3
c = 90°, V = 4535.3(7) A , Z = 8, D
c
= 1.589 Mg/m , l =
5248 [R(int) = 0.0744] unique reflections,
ꢂ1
0.152 mm
,
1
982, 38, 1966–1972; (b) Williams, J. H.; Cockcroft, J. K.;
Fitch, A. N. Angew. Chem., Int. Ed. Engl. 1992, 31, 1655–
657; (c) Dai, C.; Nguyen, P.; Marder, T. B.; Scott, A. J.;
Clegg, W.; Viney, C. Chem. Commun. 1999, 1, 2493–2494;
d) Weck, M.; Dunn, R.; Matsumoto, K.; Coates, G. W.;
Lobkovsky, E. B.; Grubbs, R. H. Angew. Chem., Int. Ed.
999, 38, 2741–2745; (e) Naae, D. G. Acta Crystallogr. Sect.
F(000) = 2176, final R = 0.0472, wR = 0.1011, [I > 2d(I)].
1
2
12 10 2
3 Æ 4 (1:1): CCDC No. 241888 C26H F N , M = 542.38;
˚
triclinic, P1, a = 6.142(4), b = 7.556(5), c = 12.347(8) A,
1
˚
3
3
ꢂ1
,
V = 560.6(6) A, Z = 1, D
2848 [R(int) = 0.0900] unique reflections, F(000) = 272,
final = 0.0521, wR = 0.1208, [I > 2d(I)]. Intensity
data was collected at 293(2) K with Bruker P4
= 1.607 Mg/m , l = 0.154 mm
c
(
R
1
2
1
a
B 1979, 35, 2765–2768; (f) Renak, M. L.; Bartholomew, G.
P.; Wang, S.; Ricatto, P. J.; Lachicotte, R. J.; Bazan, G. C.
J. Am. Chem. Soc. 1999, 121, 7787–7799; (g) Ponzini, F.;
Zagha, R.; Hardcastle, K.; Siegel, J. S. Angew. Chem., Int.
Ed. 2000, 39, 2323–2325; (h) Nishinaga, T.; Nodera, N.;
Miyata, Y.; Komatsu, K. J. Org. Chem. 2002, 67, 6091–
four-circle diffractometer; with equipped a graphite mono-
˚
chromator, and Mo Ka radiation [k (Mo Ka) = 0.71073 A)].
A total of 13,276 and 3311 independent reflections were
measured in range 1.69 < h < 28.35° and 1.88 < h < 28.30°,
respectively. The structures were solved by directed meth-
ods and expanded using Fourier techniques. The non-
hydrogen atoms were refined anisotropically. Hydrogen
atoms were included but not refined. The final cycle of
6
096; (i) Beck, C. M.; Burdeniuc, J.; Crabtree, R. H.;
Rheingold, A. L.; Yap, G. P. A. Inorg. Chim. Acta 1998,
70, 559–562; (j) Aspley, C. J.; Boxwell, C.; Buil, M. L.;
Higgitt, C. L.; Long, C.; Perutz, R. N. Chem. Commun.
999, 1027–1028; (k) Lork, E.; Mews, R.; Shakirov, M. M.;
^
2
2
full matrix least-square refinement was based on F .
All calculations were performed using the program
1
SHELX-97.