Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Table 5 Enantioselective [2+2+2] cycloisomerisation of triyne 20 to dibenzo[7]helicene
21 in the presence of enantiopure NHC ligands generated from 2, 3a or 3c
Synthesis, Vol. 45b (Eds.: J. S. Siegel, Y. Tobe), Thieme,
Stuttgart, 2010, pp. 885−953.
DOI: 10.1039/C7CC00781G
2
3
M. Čížková, D. Šaman, D. Koval, V. Kašička, B. Klepetářová, I.
Císařová and F. Teplý, Eur. J. Org. Chem., 2014, 5681–5685.
J. Storch, J. Zadny, T. Strasak, M. Kubala, J. Sykora, M. Dusek,
V. Cirkva, P. Matejka, M. Krbal and J. Vacek, Chem. Eur. J.,
2015, 21, 2343–2347.
N. Hellou, C. Jahier‐Diallo, O. Baslé, M. Srebro‐Hooper, L.
Toupet, T. Roisnel, E. Caytan, C. Roussel, N. Vanthuyne, J.
Autschbach, M. Mauduit and J. Crassous, Chem. Commun.,
2016, 52, 9243–9246.
M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius,
Nature, 2014, 510, 485–496 and references cited therein.
For applications of small helical molecules to asymmetric
catalysis, see: (a) M. J. Narcis and N. Takenaka, Eur. J. Org.
Chem., 2014, 21–34; (b) P. Aillard, A. Voituriez and A.
Marinetti, Dalton Trans., 2014, 43, 15263–15278.
Ni(acac)2, EtMgCl
NHC ligand precursor
4
20
(+)-(P)-21
Entry
NHC ligand precursor
(‐)‐(M,R,R),(M,R,R)‐2
(‐)‐(M,R,R),(M,R,R)‐3a
(‐)‐(M,R,R),(M,R,R)‐3c
Conv. (%)a,b
ee (%)c of 18
5
6
1
2
3
76
64
86
74 (+)
72 (+)
86 (+)
a Ni(acac)2 (20 mol%), EtMgCl (0.4 M in THF, 0.9 equiv.), NHC ligand precursor 2,
3a or 3c (44 mol%), THF, room temperature, 2 h. Estimated by HPLC.
Determined by HPLC on a Chiralpak IA column.
b
c
7
(a) 5‐amino[6]helicene: P. M. op den Brouw and W. H.
Laarhoven, Recl. Trav. Chim. Pays‐Bas, 1978, 97, 265–268;
(b) 3‐amino[5]helicene derivative: Z. Y. Wang, Y. Qi, T. P.
Bender and J. P. Gao, Macromolecules, 1997, 30, 764–769;
(c) 3‐amino[6]helicene derivatives: F. Teplý, I. G. Stará, I.
Starý, A. Kollárovič, D. Šaman, Š. Vyskočil and P. Fiedler, J.
Org. Chem., 2003, 68, 5193–5197; (d) tetrahydro derivative
of 5‐amino[6]helicene: A. Perzyna, C. D. Zotto, J.‐O. Durand,
M. Granier, M. Smietana, O. Melnyk, I. G. Stará, I. Starý, B.
Klepetářová and D. Šaman, Eur. J. Org. Chem., 2007, 4032–
4037; (e) 6,11‐diamino[6]helicene derivatives: G. Pieters, A.
In summary, we developed a straightforward access to
optically pure 2‐aminooxa[5]helicenes (‐)‐(M,R,R)‐10a and 2‐
aminooxa[6]helicene (‐)‐(M,R,R)‐16 employing the key [2+2+2]
cycloisomerisation of chiral functionalised triynes (‐)‐(R,R)‐8a
and (‐)‐(R,R)‐14 featuring ultimate stereocontrol. We showed
that the structure of the chloro‐substituted helical Boc‐
protected amine (‐)‐(M,R,R)‐9b could further be diversified by
attaching aryl substituents through Suzuki‐Miyaura coupling
with arylboronic acids or esters. The 2‐aminooxa[5]helicenes (‐
‐
g
,
b
Gaucher, D. Prim and J. Marrot, Chem. Commun., 2009
,
4827–4828; (f) amino[5]oxa‐ and thiahelicene derivatives: G.
Pieters, A. Gaucher, S. Marque, F. Maurel, P. Lesot and D.
Prim, J. Org. Chem., 2010, 75, 2096–2098; (g) [6]helicene‐
derived 2‐aminopyridinium ions: N. Takenaka, J. Chen, B.
Captain, R. S. Sarangthem and A. Chandrakumar, J. Am.
Chem. Soc., 2010, 132, 4536–4537; (h) 5‐amino cationic
[6]helicene derivative: F. Torricelli, J. Bosson, C. Besnard, M.
Chekini, T. Bürgi and J. Lacour, Angew. Chem. Int. Ed., 2013,
52, 1796–1800; (i) 9‐amino[7]helicene: J. Žádný, P. Velíšek,
M. Jakubec, J. Sýkora, V. Církva and J. Storch, Tetrahedron,
2013, 69, 6213–6218; (j) 5‐amino[6]helicene: M. W. van der
Meijden, E. Gelens, N. M. Quirós, J. D. Fuhr, J. E. Gayone, H.
Ascolani, K. Wurst, M. Lingenfelder and R. M. Kellogg, Chem.
Eur. J., 2016, 22, 1484–1492.
)‐(M,R,R)‐10a
were converted to the corresponding 1,3‐disubstituted
imidazolium salts (‐)‐(M,R,R)‐ , (‐)‐(M,R,R),(M,R,R)‐ and (‐)‐
(M,R,R),(M,R,R)‐3a (symmetrical or unsymmetrical). These
‐
g
and 2‐aminooxa[6]helicene (‐)‐(M,R,R)‐16
1
2
‐
g
enantiopure precursors to helical NHC ligands were employed
in the enantioselective Ni0‐catalysed triyne [2+2+2]
cycloisomerisation to provide dibenzo[6]helicene (+)‐(P)‐17 or
dibenzo[7]helicene (+)‐(P)‐21 with up to 66% ee or 86% ee,
respectively. It reveals the potential of the oxahelicene NHC
ligands in enantioselective transition metal catalysis. The study
on the conformational flexibility of the oxahelicene NHC
ligands and the mechanism of chirality transfer is in progress.
This work was supported by the Czech Science Foundation
(Reg. No. 14‐29667S) and the Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic
(RVO: 61388963).
8
9
J. Žádný, A. Jančařík, A. Andronova, M. Šámal, J. Vacek
Chocholoušová, J. Vacek, R. Pohl, D. Šaman, I. Císařová, I. G.
Stará and I. Starý, Angew. Chem. Int. Ed., 2012, 51, 5857–
5861.
A. Geny, N. Agenet, L. Iannazzo, M. Malacria, C. Aubert and
V. Gandon, Angew. Chem. Int. Ed., 2009, 48, 1810–1813.
10 M. Šámal, S. Chercheja, J. Rybáček, J. Vacek Chocholoušová,
J. Vacek, L. Bednárová, D. Šaman, I. G. Stará and I. Starý, J.
Am. Chem. Soc., 2015, 137, 8469–8474.
11 A. Fürstner, M. Alcarazo, V. César and C. W. Lehmann, Chem.
Commun., 2006, 2176–2178.
Notes and references
12 P. Queval, C. Jahier, M. Rouen, I. Artur, J.‐C. Legeay, L.
Falivene, L. Toupet, C. Crévisy, L. Cavallo, O. Baslé and M.
Mauduit, Angew. Chem. Int. Ed., 2013, 52, 14103–14107.
13 (a) G. Domínguez and J. Pérez‐Castells, Chem. Eur. J., 2016,
22, 6720–6739; (b) A. Thakur and J. Louie, Acc. Chem. Res.,
2015, 48, 2354–2365; (c) P. R. Chopadea and J. Louie, Adv.
Synth. Catal., 2006, 348, 2307–2327.
1
For recent reviews, see: (a) Chen, C.‐F.; Shen, Y., Helicene
Chemistry: From Synthesis to Applications; Springer‐Verlag:
Berlin, 2017; (b) N. Saleh, C. Shen and J. Crassous, Chem. Sci.,
2014, 5, 3680–3694; (c) J. Bosson, J. Gouin and J. Lacour,
Chem. Soc. Rev., 2014, 43, 2824–2840; (d) A. Urbano and M.
C. Carreño, Org. Biomol. Chem., 2013, 11, 699−708; (e) K.
Tanaka in Transition‐Metal‐Mediated Aromatic Ring
14 A. Jančařík, J. Rybáček, K. Cocq, J. Vacek Chocholoušová, J.
Vacek, R. Pohl, L. Bednárová, P. Fiedler, I. Císařová, I. G. Stará
and I. Starý, Angew. Chem. Int. Ed., 2013, 52, 9970–9975.
15 P. Aillard, D. Dova, V. Magné, P. Retailleau, S. Cauteruccio, E.
Licandro, A. Voituriez and A. Marinetti, Chem. Commun.,
2016, 52, 10984–10987.
Construction (Ed.: K. Tanaka), Wiley, Hoboken, 2013, pp.
281−298; (f) M. Gingras, Chem. Soc. Rev., 2013, 42, 968–
1006; (g) M. Gingras, G. Félix and R. Peresutti, Chem. Soc.
Rev., 2013, 42, 1007–1050; (h) M. Gingras, Chem. Soc. Rev.,
2013, 42, 1051–1095; (i) Y. Shen and C.‐F. Chen, Chem. Rev.,
2011, 112, 1463–1535; (j) I. G. Stará and I. Starý in Science of
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins