12072
N. T. S. Phan et al. / Tetrahedron 61 (2005) 12065–12073
the mixture was allowed to cool to room temperature
and saturated aqueous NaCl solution (3 ml) was added. The
organic components were extracted into diethyl ether (3!
time within the catalyst bed was found to be 10.5 min at the
flow rate of 6 ml/min.
3
ml), which was dried over anhydrous MgSO and the
4
resulting solution analysed by GC and GC–MS with
reference to standard solutions of 4-methoxybiphenyl.
Acknowledgements
We wish to thank the Vietnamese Government for financial
support in the form of a studentship to NTSP and to
Oz MacFarlane for construction of the cyclic timer.
4
.4.2. Micro flow reactions. Unless otherwise stated, the
Suzuki–Miyaura coupling reaction of 4-bromoanisole with
phenylboronic acid was carried out in a pressure driven
micro flow reactor (lengthZ25 mm; I.D.Z3 mm) build up
from Omnifit glassware containing the Merrifield resin-
supported palladium catalyst (110 mg). Standard HPLC
connectors allowed one end of the reactor to be connected to
a disposable solvent-resistant syringe, while the other end
was attached to a syringe needle leading to a quenching
vessel containing diethyl ether and saturated aqueous
References and notes
1
. Negishi, E.; Liu, F.; Suzuki, A.; Brase, S.; Meijere, A. D. In
Metal-catalysed Cross-coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; p 1.
Na CO . The reactor was heated by immersing it in a
3
2
2. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
3
water bath at 100 8C. Reactant mixtures consisting of
-bromoanisole (0.1 M), phenylboronic acid (0.15 M) and
. Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58,
4
4
N,N-diisopropyl ethyl amine (0.3 M) in DMF/water 1:1 at
room temperature were then pumped continuously through
the palladium resin catalyst bed at known flow rates for 5 h,
using a syringe pump (RAZAL, A-99). The organic
components were extracted into diethyl ether and analysed
by GC and GC–S as described above.
9
633.
5
. Mubofu, E. B.; Clark, J. H.; Macquarrie, D. J. Green Chem.
2001, 3, 23.
6. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009.
7. Paul, S.; Clark, J. H. Green Chem. 2003, 5, 635.
8
. Kosslick, H.; Monnich, I.; Paetzold, E.; Fuhrman, H.; Fricke,
R.; Muller, D.; Oehme, G. Microporous Mesoporous Mater.
4
.5. Residence time distribution measurement
2
000, 44, 537.
. Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S.
9
The mean residence/space time of the reaction solution
within the catalyst bed was measured using a standard
Org. Lett. 2002, 4, 3371 and references therein.
0. Baleizao, C.; Corma, A.; Garcia, H.; Leyva, A. Chem.
Commun. 2003, 606.
1
2
experimental method, the step experiment. A solution of
2
CoCl in DMF/water 1:1 was pumped through the Omnifit
2
1
1. Ley, S. V.; Ramarao, C.; Gordon, R. S.; Holmes, A. B.;
Morroson, A. J.; McConvey, I. F.; Shirley, I. M.; Smith, S. C.;
Smith, M. D. Chem. Commun. 2002, 1134.
flow reactor containing the palladium resin catalyst
(
110 mg) at the flow rate of 6 ml/min. The outlet absorbance
distribution, and hence the outlet concentration distribution,
versus time was measured online using a fibre optic
spectrometer (USB 2000-UV–vis, Ocean Optics Inc.) at
different wavelength ranging from 450 to 560 nm. The
absorbance distribution at the wavelengths of 520 nm versus
time is shown in Figure 5. Taking into account the residence
time of the solution in the HPLC standard connectors based
on their volumes and the known flow rate, the mean space
1
1
1
2. Hardy, J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green
Chem. 2004, 6, 53.
3. Kwong, F. K.; Lam, W. H.; Yeung, C. H.; Chan, K. S.; Chan,
A. S. C. Chem. Commun. 2004, 1922.
4. Haswell, S. J.; Middleton, R. J.; O’Sullivan, B.; Skelton, V.;
Watts, P.; Styring, P. Chem. Commun. 2001, 391.
5. Watts, P.; Haswell, S. J. Drug Discovery Today 2003, 8, 586.
6. Watts, P.; Haswell, S. J. Curr. Opin. Chem. Biol. 2003, 7, 380.
7. Watts, P.; Haswell, S. J. Green Chem. 2003, 5, 240.
8. Jahnisch, K.; Hessel, V.; Loeve, H.; Baerns, M. Angew. Chem.,
Int. Ed. 2004, 43, 406.
1
1
1
1
1
9. Fletcher, P. D. I.; Haswell, S. J.; Pombo-Villar, E.;
Warrington, B. H.; Watts, P.; Wong, S. Y. F.; Zhang, X.
Tetrahedron 2002, 58, 4735 and references therein.
0. Ueno, M.; Hisamoto, H.; Kitamori, T.; Kobayashi, S. Chem.
Commun. 2003, 936.
2
2
1. Greenway, G. M.; Haswell, S. J.; Morgan, D. O.; Skelton, V.;
Styring, P. Sens. Actuators B 2000, 63, 153.
2
2. He, P.; Haswell, S. J.; Fletcher, P. D. I. Lab Chip 2004, 4, 38.
3. Phan, N. T. S.; Brown, D. H.; Adams, H.; Spey, S. E.; Styring,
P. Dalton Trans. 2004, 1348.
2
2
4. Phan, N. T. S.; Brown, D. H.; Styring, P. Tetrahedron Lett.
2
004, 45, 7915.
2
5. Namboodiri, V. V.; Varma, R. S. Green Chem. 2001, 3, 146.
6. Levenspiel, O. Chemical Reaction Engineering, 3rd ed.;
Wiley: New York, 1999; p 263.
2
Figure 5. The outlet absorbance distribution versus time at the wavelength
of 520 nm and the flow rate of 6 ml/min using CoCl in DMF/H O.
2 2