C2-Symmetric, Chiral 9,9Ј-Spirobifluorenes
3
4
2.3 Hz, 2 H, 6-H), 7.53 (dd, J3,4 = 8.2, J1,3 = 1.9 Hz, 2 H, 3-H),
3
5
3
7.80 (dd, J3,4 = 8.2, J1,4 = 0.4 Hz, 2 H, 4-H), 7.83 (dd, J5,6
=
[1]
[2]
R. G. Clarkson, M. Gomberg, J. Am. Chem. Soc. 1930, 52,
2881–2891.
8.2, 5J5,8 = 0.4 Hz, 2 H, 5-H), 8.50 (br. s, 2 H, OH) ppm. 13C NMR
(125.8 MHz, [D6]acetone): δ = 66.2 (C-9), 111.4 (C-8), 116.6 (C-6),
120.1 (C-2), 121.9 (C-4), 122.6 (C-5), 127.3 (C-1), 132.0 (C-3), 133.0
(C-11), 142.2 (C-12), 150.9 (C-10, C-13), 159.2 (C-7) ppm. MS (EI):
m/z (%) = 506.0 (100) [C25H14Br2O2]+·, 425.1 (40) [C25H14BrO2]+,
345.1 (20) [C25H13O2]+. HRMS (EI): m/z calcd. for [C25H14Br2-
O2]+· 503.9361; found 503.9358. C25H14Br2O2·3/4C4H8O2: calcd. C
58.77, H 3.52; found C 58.80, H 3.55.
a) G. Haas, V. Prelog, Helv. Chim. Acta 1969, 52, 1202–1218;
b) V. Prelog, Pure Appl. Chem. 1978, 50, 893–904; c) V. Prelog,
D. Bedekovic, Helv. Chim. Acta 1979, 62, 2285–2302; d) V. Pre-
log, S. Mutak, Helv. Chim. Acta 1983, 66, 2274–2278; e) M.
Dobler, M. Dumic´, M. Egli, V. Prelog, Angew. Chem. Int. Ed.
Engl. 1985, 24, 792–794; Angew. Chem. 1985, 97, 793–794; f)
M. Egli, M. Dobler, Helv. Chim. Acta 1986, 69, 626–631; g) V.
Prelog, M. Kovacˇevic´, M. Egli, Angew. Chem. Int. Ed. Engl.
1989, 28, 1147–1152; Angew. Chem. 1989, 101, 1173–1178.
a) V. Alcazar Montero, L. Tomlinson, K. N. Houk, F. Dieder-
ich, Tetrahedron Lett. 1991, 32, 5309–5312; b) V. Alcazar, F.
Diederich, Angew. Chem. Int. Ed. Engl. 1992, 31, 1521–1523;
Angew. Chem. 1992, 104, 1503–1505; c) V. Alcazar, J. R. Mo-
ran, F. Diederich, Isr. J. Chem. 1992, 32, 69–77; d) J. Cuntze,
L. Owens, V. Alcazar, P. Seiler, F. Diederich, Helv. Chim. Acta
1995, 78, 367–390; e) B. Winter Werner, F. Diederich, V. Gram-
lich, Helv. Chim. Acta 1996, 79, 1338–1360; f) J. Cuntze, F.
Diederich, Helv. Chim. Acta 1997, 80, 897–911; g) P. Lusten-
berger, E. Martinborough, T. M. Denti, F. Diederich, J. Chem.
Soc. Perkin Trans. 2 1998, 747–762; h) D. K. Smith, F. Dieder-
ich, Chem. Commun. 1998, 2501–2502; i) D. K. Smith, A.
Zingg, F. Diederich, Helv. Chim. Acta 1999, 82, 1225–1241; j)
F. Diederich, B. Felber, Proc. Natl. Acad. Sci. USA 2002, 99,
4778–4781.
Separation of Enantiomers: HPLC conditions: chiral phase (semi-
[3]
preparative), Chiralpak IA; CHCl3/2-propanol, 95:5;
f
=
2.3 mLmin–1; sample solvent: CHCl3/2-propanol, 10:1 (v/v); load-
ing per run: 20 mg of racemic material.
Compound (–)-(S)-6: Retention time: 6.60 min; [α]2D0 –20.4 (c =
3.44 mgmL–1, CHCl3); 99.9%ee.
Compound (+)-(R)-6: Retention time: 16.0 min; [α]2D0 +19.0 (c =
2.16 mgmL–1, CHCl3); 99.9%ee.
3,3Ј-Dibromo-2,2Ј-dihydroxy-9,9Ј-spirobifluorene (7): Compound 3
(0.40 g, 1.15 mmol) was dissolved in methanol (12 mL) and di-
chloromethane (18 mL), then tetrabutylammonium tribromide
(1.11 g, 2.30 mmol) was added in small portions. The solution was
stirred for 30 min until decolouration of the orange solution oc-
curred. The solvents were evaporated and the waxy residue was
taken up in water and diethyl ether. The layers were separated and
the aqueous layer was extracted twice with diethyl ether. The com-
bined organic layers were washed with brine and dried with
MgSO4. After removal of the solvent, the crude product was puri-
fied by column chromatography on silica gel [cyclohexane/ethyl
acetate, 5:1 (v/v); Rf = 0.73], yield 0.482 g (0.95 mmol, 83%). 1H
NMR (400.1 MHz, [D6]acetone): δ = 2.90 (br. s, 2 H, OH), 6.33 (s,
[4]
[5]
a) C. Poriel, Y. Ferrand, P. le Maux, J. Raul-Berthelot, G. Si-
monneaux, Chem. Commun. 2003, 1104–1105; b) C. Poriel, Y.
Ferrand, P. Le Maux, J. Rault-Berthelot, G. Simonneaux, Tet-
rahedron Lett. 2003, 44, 1759–1761; c) J.-H. Xie, Q.-L. Zhou,
Acc. Chem. Res. 2008, 41, 581–593.
a) A. M. W. Cargill Thompson, J. Hock, J. A. McCleverty,
M. D. Ward, Inorg. Chim. Acta 1997, 256, 331–334; b) K.-T.
Wong, Y.-L. Liao, Y.-C. Peng, C.-C. Wang, S.-Y. Lin, C.-H.
Yang, S.-M. Tseng, G.-H. Lee, S.-M. Peng, Cryst. Growth Des.
2004, 5, 667–671; c) R. E. Douthwaite, N. Guillaume, A. C.
Whitwood, J. Organomet. Chem. 2006, 691, 711–716; d) C. S.
Collins, D. Sun, W. Liu, J.-L. Zuo, H.-C. Zhou, J. Mol. Struct.
2008, 890, 163–169; e) T. Piehler, A. Lützen, Z. Naturforsch. B
2010, 65, 329–336; f) H.-F. Chen, K.-T. Wong, Y.-H. Liu, Y.
Wang, Y.-M. Cheng, M.-W. Chung, P.-T. Chou, H.-C. Su, J.
Mater. Chem. 2011, 21, 768–774; g) F. Moreau, N. Audebrand,
C. Poriel, V. Moizan-Basle, J. Ouvry, J. Mater. Chem. 2011, 21,
18715–18722; h) R. Hovorka, S. Hytteballe, T. Piehler, G.
Meyer-Eppler, F. Topic´, K. Rissanen, M. Engeser, A. Lützen,
Beilstein J. Org. Chem. 2014, 10, 432–441; i) R. Hovorka, G.
Meyer-Eppler, T. Piehler, S. Hytteballe, M. Engeser, F. Topic´,
K. Rissanen, A. Lützen, Chem. Eur. J., DOI: 10.1002/
chem.201403414.
a) D. S. Reddy, C.-F. Shu, F.-I. Wu, J. Polym. Sci., Part A 2001,
40, 262–268; b) C.-H. Chou, D. S. Reddy, C.-F. Shu, J. Polym.
Sci., Part A 2002, 40, 3615–3621; c) S.-C. Wu, C.-F. Shu, J.
Polym. Sci., Part A 2003, 41, 1160–1166; d) C.-H. Chen, C.-F.
Shu, J. Polym. Sci., Part A 2004, 42, 3314–3322; e) R. Seto, T.
Sato, T. Kojima, K. Hosokawa, Y. Koyama, G.-I. Konishi, T.
Takata, J. Polym. Sci., Part A 2010, 48, 3658–3667; f) X. Guan,
C. Zhao, X. Liu, H. Zhang, J. Chromatogr. A 2013, 1302, 28–
33; g) X. Ma, O. Salinas, E. Litwiller, I. Pinnau, Macromole-
cules 2013, 46, 9618–9624; h) R. Seto, Y. Koyama, K. Xu, S.
Kawauchi, T. Takata, Chem. Commun. 2013, 49, 5486–5488.
a) N. Johansson, D. A. dos Santos, S. Guo, J. Cornil, M. Fahl-
man, J. Salbeck, H. Schenk, H. Arwin, J. L. Bredas, W. R. Sal-
anek, J. Chem. Phys. 1997, 107, 2542–2549; b) N. Johansson,
J. Salbeck, J. Bauer, F. Weissoertel, P. Broems, A. Andersson,
W. R. Salaneck, Adv. Mater. 1998, 10, 1136–1141; c) R. E.
Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 1350–
1377; Angew. Chem. 1999, 111, 1440–1469; d) F. Steuber, J.
Staudigel, M. Stossel, J. Simmerer, A. Winnacker, H. Spreitzer,
F. Weissortel, J. Salbeck, Adv. Mater. 2000, 12, 130–133; e) W.-
3
4
2 H, 1-H), 6.68 (dd, J7,8 = 7.6, J6,8 = 0.7 Hz, 2 H, 8-H), 7.11
3
3
4
(ddd, J7,8 = 7.6, J6,7 = 7.5, J5,7 = 1.1 Hz, 2 H, 7-H), 7.38 (ddd,
3J6,7 = 7.5, J5,6 = 7.6, J6,8 = 0.7 Hz, 2 H, 6-H), 7.91 (dd, J5,6
=
3
4
3
7.6, J5,7 = 1.1 Hz, 2 H, 5-H), 8.08 (s, 2 H, 4-H) ppm. 13C NMR
(100.6 MHz, [D6]acetone): δ = 66.2 (C-9), 110.5 (C-3), 112.4 (C-1),
120.6 (C-5), 124.5 (C-8), 125.6 (C-4), 128.1 (C-7), 129.0 (C-6), 136.0
(C-11), 141.6 (C-12), 148.9 (C-13), 150.6 (C-10), 154.7 (C-2) ppm.
MS (EI): m/z (%) = 505.8 (100) [C25H14Br2O2]+·, 488.8 (45)
[C25H13Br2O]+, 424.9 (15) [C25H14BrO2]+. HRMS (EI): m/z calcd.
for [C25H14Br2O2]+· 503.9361; found 503.9362. C25H14Br2O2·
1/6C6H12: calcd. C 60.03, H 3.10; found C 59.94, H 3.30.
4
Separation of Enantiomers: HPLC conditions: chiral phase (semi-
preparative), Chiralpak IA; CHCl3/n-hexane, 95:5;
f
=
[6]
2.3 mLmin–1; sample solvent: CHCl3/2-propanol, 10:1 (v/v); load-
ing per run: 20 mg of racemic material.
Compound (–)-(S)-7: Retention time: 7.90 min; [α]2D0 –34.8 (c =
3.80 mgmL–1, CHCl3); 94.5%ee.
Compound (+)-(R)-7: Retention time: 11.6 min; [α]2D0 +34.3 (c =
3.67 mgmL–1, CHCl3); 99.1%ee.[19]
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra of compounds 4–7.
[7]
Acknowledgments
Financial support for this work by the Deutsche Forschungsge-
meinschaft (DFG) (SFB 624) and the Ministry of Innovation,
Science, and Research of the Federal State of North Rhine-West-
falia, Germany is gratefully acknowledged.
Eur. J. Org. Chem. 2014, 6513–6518
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6517