5454 J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 26
Bonse et al.
(3) Fairlamb, A. H.; Blackburn, P.; Ulrich, P.; Chait, B. T.; Cerami,
A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor
for glutathione reductase in trypanosomatids. Science 1985, 227,
1485-1487.
(4) Kuriyan, J .; Kong, X. P.; Krishna, T. S.; Sweet, R. M.; Murgolo,
N. J .; Field, H.; Cerami, A.; Henderson, G. B. X-ray structure of
trypanothione reductase from Crithidia fasciculata at 2.4 Å
resolution. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8764-8768.
(5) Hunter, W. N.; Bailey, S.; Habash, J .; Harrop, S. J .; Helliwell,
J . R.; Aboagye-Kwarteng, T.; Smith, K.; Fairlamb, A. H. Active
site of trypanothione reductase. A target for rational drug design.
J . Mol. Biol. 1992, 227, 322-333.
(23) Hammond, D. J .; Cover, B.; Gutteridge, E. W. A novel series of
chemical structures active in vitro against the trypomastigote
form of Trypanosoma cruzi. Trans. R. Soc. Trop. Med. Hyg. 1984,
78, 91-95.
(24) Obexer, W.; Schmid, C.; Barbe, J .; Galy, J . P.; Brun, R. Activity
and structure relationship of acridine derivatives against African
trypanosomes. Trop. Med. Parasitol. 1995, 46, 49-53.
(25) Albert, A. The Acridines; Edward Arnold: London, 1966.
(26) Shepard, E. R.; Shonle, H. A. Nuclear substituted 9-(4′-diethy-
lamino-1′-methylbutylamino)-acridines. J . Am. Chem. Soc. 1948,
70, 1979-1980.
(6) Lantwin, C. B.; Schlichting, I.; Kabsch, W.; Pai, E. F.; Krauth-
Siegel, R. L. The structure of Trypanosoma cruzi trypanothione
reductase in the oxidized and NADPH reduced state. Proteins
1994, 18, 161-173.
(7) Stoll, V. S.; Simpson, S. J .; Krauth-Siegel, R. L.; Walsh, C. T.;
Pai, E. F. Glutathione reductase turned into trypanothione
reductase: structural analysis of an engineered change in
substrate specificity. Biochemistry 1997, 36, 6437-6447.
(8) Faerman, C. H.; Savvides, S. N.; Strickland, C.; Breidenbach,
M. A.; Ponasik, J . A.; Ganem, B.; Ripoll, D.; Krauth-Siegel, R.
L.; Karplus, P. A. Charge is the major discriminating factor for
glutathione reductase versus trypanothione reductase inhibitors.
Bioorg. Med. Chem. 1996, 4, 1247-1253.
(27) Borch, R. F.; Bernstein, M. D.; Durst, H. D. The cyanohydri-
doborate anion as a selective reducing agent. J . Am. Chem. Soc.
1971, 93, 2897-2904.
(28) Breslow, D. S.; Yost, R. S.; Walker, H. G.; Hauser, C. R. Synthesis
of atabrine analogues having various aliphatic a-substituents
in the side chain. J . Am. Chem. Soc. 1944, 66, 1-1924.
(29) Bsiri, N.; J ohnson, C.; Kayirere, M.; Galy, A. M.; Galy, J . P.;
Barbe, J .; Osuna, A.; Mesa-Valle, M. C.; Castilla Calvente, J .
J .; Rodriguez-Cabezas, M. N. Trypanocidal structure- activity
relationship in 9-thioalkylacridines. Ann. Pharm. Fr. 1996, 54,
27-33.
(30) Segel, I. H. Enzyme kinetics; J ohn Wiley & Sons: New York,
1993.
(9) Dumas, C.; Ouellette, M.; Tovar, J .; Cunningham, M. L.;
Fairlamb, A. H.; Tamar, S.; Olivier, M.; Papadopoulou, B.
Disruption of the trypanothione reductase gene of Leishmania
decreases its ability to survive oxidative stress in macrophages.
EMBO J . 1997, 16, 2590-2598.
(31) Dixon, M.; Webb, E. C. Enzymes; Academic Press: London, 1979.
(32) Garforth, J .; Yin, H.; McKie, J . H.; Douglas, K. T.; Fairlamb, A.
H. Rational design of selective ligands for trypanothione reduc-
tase from Trypanosoma cruzi. Structural effects on the inhibition
by dibenzazepines based on imipramine. J . Enzyme Inhib. 1997,
12, 161-173.
(33) Wlodek, S. T.; Antosiewicz, J .; McCammon, J . A.; Straatsma, T.
P.; Gilson, M. K.; Briggs, J . M.; Humblet, C.; Sussman, J . L.
Binding of tacrine and 6-chlorotacrine by acetylcholinesterase.
Biopolymers 1996, 38, 109-117.
(34) Cornish-Bowden, A. A simple graphical method for determining
the inhibition constants of mixed, uncompetitive and noncom-
petitive inhibitors. Biochem. J . 1974, 137, 143-144.
(35) Karplus, P. A.; Pai, E. F.; Schulz, G. E. A crystallographic study
of the glutathione binding site of glutathione reductase at 0.3
nm resolution. Eur. J . Biochem. 1989, 178, 693-703.
(36) Savvides, S. N.; Karplus, P. A. Kinetics and crystallographic
analysis of human glutathione reductase in complex with a
xanthene inhibitor. J . Biol. Chem. 1996, 271, 8101-8107.
(37) Scho¨nleben-J anas, A.; Kirsch, P.; Mittl, P. R.; Schirmer, R. H.;
Krauth-Siegel, R. L. Inhibition of human glutathione reductase
by 10-arylisoalloxazines: crystalline, kinetic, and electrochemical
studies. J . Med. Chem. 1996, 39, 1549-1554.
(38) Bilzer, M.; Krauth-Siegel, R. L.; Schirmer, R. H.; Akerboom, T.
P.; Sies, H.; Schulz, G. E. Interaction of a glutathione S-conjugate
with glutathione reductase. Kinetic and X-ray crystallographic
studies. Eur. J . Biochem. 1984, 138, 373-378.
(39) Horvath, D. A virtual screening approach applied to the search
for trypanothione reductase inhibitors. J . Med. Chem. 1997, 40,
2412-2423.
(40) Becker, K.; Christopherson, R. I.; Cowden, W. B.; Hunt, N. H.;
Schirmer, R. H. Flavin analogues with antimalarial activity as
glutathione reductase inhibitors. Biochem. Pharmacol. 1990, 39,
59-65.
(41) Sullivan, F. X.; Walsh, C. T. Cloning, sequencing, overproduction
and purification of trypanothione reductase from Trypanosoma
cruzi. Mol. Biochem. Parasitol. 1991, 44, 145-147.
(42) J ockers-Scheru¨bl, M. C.; Schirmer, R. H.; Krauth-Siegel, R. L.
Trypanothione reductase from Trypanosoma cruzi. Catalytic
properties of the enzyme and inhibition studies with trypano-
cidal compounds. Eur. J . Biochem. 1989, 180, 267-272.
(43) Albert, A.; Dyer, F. J .; Linnel, W. H. Chemotherapeutic studies
in the acridine series. IV Relation between structure and toxicity.
Q. J . Pharm. Pharmacol. 1937, 10, 649-658.
(44) Holliman, F. G.; Mann, F. G. Synthetic application of o-â-
bromoethylbenzyl bromide. J . Chem. Soc. 1945, 34-37.
(45) Cherntsov, O. M.; Drozdov, N. S. The preparation and antima-
larial action of substituted 9-aminoacridine. Zh. Obshchei. Khim.
1939, 9, 1435-1440.
(46) Mietzsch, F.; Mauss, H. I. I. G. Farben, Deutsches Patent,
553,072. Chem. Abstr. 1932, 4683.
(47) Galy, J . P.; Vincent, E. J .; Galy, A. M.; Barbe, J .; Elguero, J . A
comparative study of reactivity of acridanones, aminoacridines
and thioacridanones toward alkylating agents using phase
transfer catalysis. Bull. Soc. Chim. Belg. 1981, 90, 947-954.
(10) Tovar, J .; Cunningham, M. L.; Smith, A. C.; Croft, S. L.;
Fairlamb, A. H. Down-regulation of Leishmania donovani try-
panothione reductase by heterologous expression of a trans-
dominant mutant homologue: effect on parasite intracellular
survival. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5311-5316.
(11) Krieger, S.; Schwarz, W.; Ariyanayagam, M. R.; Fairlamb, A.
H.; Krauth-Siegel, R. L.; Clayton, C. H. Trypanosomes lacking
trypanothione reductase are avirulent and show increased
sensitivity to oxidative stress. Mol. Microbiol., in press.
(12) Bailey, S.; Smith, K.; Fairlamb, A. H.; Hunter, W. N. Substrate
interactions between trypanothione reductase and N1-glutathio-
nylspermidine disulphide at 0.28-nm resolution. Eur. J . Bio-
chem. 1993, 213, 67-75.
(13) Bond, C. S.; Zhang, Y.; Berriman, M.; Cunningham, M. L.;
Fairlamb, A. H.; Hunter, W. N. Crystal structure of Trypano-
soma cruzi trypanothione reductase in complex with trypan-
othione, and the structure-based discovery of new natural
product inhibitors. Structure 1999, 7, 81-89.
(14) J acoby, E. M.; Schlichting, I.; Lantwin, C. B.; Kabsch, W.;
Krauth-Siegel, R. L. Crystal structure of the Trypanosoma cruzi
trypanothione reductase mepacrine complex. Proteins 1996, 24,
73-80.
(15) Schirmer, R. H.; Mu¨ller, J . G.; Krauth-Siegel, R. L. Disulfide-
reductase inhibitors as chemotherapeutic agents: The design
of drugs for trypanosomiasis and malaria. Angew. Chem., Int.
Ed. Engl. 1995, 34, 141-154.
(16) Krauth-Siegel, R. L.; Scho¨neck, R. Flavoprotein structure and
mechanism. 5. Trypanothione reductase and lipoamide dehy-
drogenase as targets for a structure-based drug design. FASEB
J . 1995, 9, 1138-1146.
(17) Krauth-Siegel, R. L.; Coombs, G. H. Enzymes of parasite thiol
metabolism as drug targets. Parasitol. Today 1999, 15, 404-
409.
(18) Krauth-Siegel, R. L.; Lohrer, H.; Bu¨cheler, U. S.; Schirmer, R.
H. The antioxidant enzymes glutathione reductase and trypan-
othione reductase as drug targets. In Biochemical Protozoology;
Coombs, G., North, M., Eds; Taylor & Francis: London, 1991;
pp 493-506.
(19) Benson, T. J .; McKie, J . H.; Garforth, J .; Borges, A.; Fairlamb,
A. H.; Douglas, K. T. Rationally designed selective inhibitors of
trypanothione reductase. Phenothiazines and related tricyclics
as lead structures. Biochem. J . 1992, 286, 9-11.
(20) Krauth-Siegel, R. L.; J acoby, E. M.; J ockers-Scheru¨bl, M. C.;
Schlichting, I.; Barbe, J . T. cruzi trypanothione reductase:
structure-function relationships of enzyme-inhibitor com-
plexes. In Flavins and Flavoproteins; Stevenson, K. J ., Massey,
V., Williams, C. H., J r., Eds.; University of Calgary Press:
Canada, 1996; pp 35-44.
(21) Chan, C.; Yin, H.; Garforth, J .; McKie, J . H.; J aouhari, R.; Speers,
P.; Douglas, K. T.; Rock, P. J .; Yardley, V.; Croft, S. L.; Fairlamb,
A. H. Phenothiazine inhibitors of trypanothione reductase as
potential antitrypanosomal and antileishmanial drugs. J . Med.
Chem. 1998, 41, 148-156.
(22) Girault, S.; Davioud-Charvet, E.; Salmon, L.; Berecibar, A.;
Debreu, M. A.; Sergheraert, C. Structure-activity relationships
in 2-aminodiphenylsulfides against trypanothione reductase
from Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 1998, 8,
1175-1180.
J M990386S