These results highlight the importance of the dual functionality
of the supported tungsten carbene-hydride W(H) (Q CHR) active
site in the direct conversion of 2-trans-butene into propylene. A
catalytic cycle that involves all these reactions, i.e. isomerisation
of 2-butenes to 1-butene (cycle A), 1-butene/2-butenes cross
metathesis (cycle B), can be proposed (Scheme 2).
1
7
A classical process for producing propylene using olefin
metathesis comprises three separate steps: (i) dimerising
ethylene to 1-butene; (ii) isomerising 1-butene to 2-butenes;
and (iii) cross-metathesis of 2-butenes by ethylene. The present
reaction produces propylene directly in one single step via a
non-degenerate pathway from 2-butenes that has important
1
8
scientific, economical and technical advantages.
In summary, the WH /Al O system is the best unprece-
Fig. 3 Selectivity at 20 h on stream for 1-butene/2-butene metathesis
catalyzed by WH /Al 3-(500) (5.5 wt% W) at 150 1C vs. 1-butene
molar percentage in the 2-butene feed.
3
2 3-(500)
3
2
O
dented single-site catalyst precursor for the direct transformation
of trans-2-butene to propylene, regarding either activity or
selectivity; it operates as a ‘‘bi-functional single active site’’
tungsten carbene-hydride catalyst, opening up the non-degenerate
pathway via 2-butene isomerisation to 1-butene and 2-butenes/
1-butene cross-metathesis. This example simultaneously provides
a novel process to utilise 2-butene feedstock to produce propylene
in promising productivity.
Notes and references
1
2
3
4
5
J. S. Plotkin, Catal. Today, 2005, 106, 10–14.
J. C. Mol, J. Mol. Catal. A: Chem., 2004, 213, 39–45.
A. H. Tullo, Chem. Eng. News, 2003, 81, 15–16.
J. Engelhardt, J. Mol. Catal., 1980, 8, 119–125.
P. Amigues, Y. Chauvin, D. Commereuc, C. T. Hong, C. C. Lai
and Y. H. Liu, J. Mol. Catal., 1991, 65, 39–50.
Fig. 4 Productivity of propylene at 20 h on stream for 1-butene/
6 S. M. Pillai, G. L. Tembe and M. Ravindranathan, Appl. Catal., A,
1992, 81, 273–278.
2
1
3 2
-butene metathesis catalyzed by WH /Al O3-(500) (5.5 wt% W) at
7
E. Le Roux, M. Taoufik, C. Coperet, A. de Mallmann, J. Thivolle-
Cazat, J. M. Basset, B. M. Maunders and G. J. Sunley, Angew.
Chem., Int. Ed., 2005, 44, 6755–6758.
50 1C vs. 1-butene molar percentage in the 2-butene feed.
For each ratio 2-butene/1-butene, the conversion profile is
8
9
M. Taoufik, E. Le Roux, J. Thivolle-Cazat and J. M. Basset,
Angew. Chem., Int. Ed., 2007, 46, 7202–7205.
´
J. M. Basset, C. Coperet, D. Soulivong, M. Taoufik and
very similar, with a maximum conversion for the experiment
where the feed is only composed of 1-butene. It is also notable
that this experiment shows the fastest deactivation rate. After
J. Thivolle-Cazat, Acc. Chem. Res., 2010, 43, 323–334.
1
1
1
0 E. Mazoyer, K. C. Szeto, S. Norsic, A. Garron, J. M. Basset,
C. Nicholas and M. Taoufik, ACS Catal., 2011, 1, 1643–1646.
1 X. Zehui, G. Chaoran and W. Peilin, Prog. Chem., 2009, 21(04),
2
3
0 h on stream, the 50% mixture gives a conversion rate with
ꢀ1
ꢀ1
.8 molC4H8 mol
W
min (Fig. S3, ESIw). As expected, the
7
84–790.
selectivity in propylene is slightly better when 1-butene is a
minor component of the feed. It decreases when the molar
percentage of 1-butene increases, raising the selectivity in
hexenes and ethylene, produced by self-metathesis of 1-butene.
Operating with 33% of 1-butene in the feed gives the best
selectivity in propylene with 55% at the steady state (Fig. 3).
At 20 h on stream the productivity rates span from 26.9
2 W. H. Meyer, M. M. D. Radebe, D. W. Serfontein, U. Ramdhani,
M. du Toit and C. P. Nicolaides, Appl. Catal., A, 2008, 340,
236–241.
1
1
3 D. N. Clark and R. R. Schrock, J. Am. Chem. Soc., 1978, 100,
6
4 E. J. Arlman and P. Cossee, J. Catal., 1964, 3, 99–104.
774–6776.
15 P. Cossee, J. Catal., 1964, 3, 80–88.
16 D. R. Stull, E. F. Westrum and G. C. Sinke, The chemical
thermodynamics of organic compounds, Krieger, Malabar, 1987.
ꢀ1
ꢀ1
to 36.0 mmolC3H6 gcata
is reached with a 1 : 1 ratio of 1-butene to trans-2-butene
Fig. 4).
h
. The maximum productivity
1
1
7 A. G. Bozzano and B. K. Glover, US Pat., 7586018, 2009.
8 C. P. Nicholas, E. Mazoyer, M. Taoufik, J.-M. Basset and
P. T. Barger, US Pat. Appl. Publ., 245569, 2011.
(
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3611–3613 3613